Peeling of multilayer graphene creates complex interlayer sliding patterns

Peeling, shearing, and sliding are important mechanical phenomena in van der Waals solids. However, theoretically they have been studied mostly using minimal periodic cells and in the context of accurate quantum simulations. Here we investigate the peeling of large-scale multilayer graphene stacks w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2015-09, Vol.92 (11)
Hauptverfasser: Korhonen, Topi, Koskinen, Pekka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Physical review. B
container_volume 92
creator Korhonen, Topi
Koskinen, Pekka
description Peeling, shearing, and sliding are important mechanical phenomena in van der Waals solids. However, theoretically they have been studied mostly using minimal periodic cells and in the context of accurate quantum simulations. Here we investigate the peeling of large-scale multilayer graphene stacks with varying thicknesses, stackings, and peeling directions by using classical molecular dynamics simulations with a registry-dependent interlayer potential. Simulations show that, while at large scale the peeling proceeds smoothly, at small scale the registry shifts and sliding patterns of the layers are unexpectedly intricate and depend both on the initial stacking and on the peeling direction. These observations indicate that peeling and concomitant kink formations may well transform stacking order and thereby profoundly influence the electronic structures of such multilayer solids.
doi_str_mv 10.1103/PhysRevB.92.115427
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786188148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786188148</sourcerecordid><originalsourceid>FETCH-LOGICAL-p118t-d6e569a2014f04dbd0540fcfcdfb9fc3edeee146865d45624378081b92e161133</originalsourceid><addsrcrecordid>eNo9jMtOwzAURC0EElXpD7Dykk3KvYnj2EuoeKoSFYJ15djXbZCbhNhB9O8pKmI1o6Mzw9glwhwRiuvVdh9f6et2rvMDKEVenbBJLqTOtJb69L-XcM5mMX4AAErQFegJe14Rhabd8M7z3RhSE8yeBr4ZTL-llrgdyCSK3Ha7PtA3b9pEw9GJoXG_y96kA2vjBTvzJkSa_eWUvd_fvS0es-XLw9PiZpn1iCplTlIptckBhQfhagelAG-9db7W3hbkiAiFVLJ0opS5KCoFCmudE0rEopiyq-NvP3SfI8W03jXRUgimpW6Ma6yURKVQqOIHfn9UWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786188148</pqid></control><display><type>article</type><title>Peeling of multilayer graphene creates complex interlayer sliding patterns</title><source>American Physical Society Journals</source><creator>Korhonen, Topi ; Koskinen, Pekka</creator><creatorcontrib>Korhonen, Topi ; Koskinen, Pekka</creatorcontrib><description>Peeling, shearing, and sliding are important mechanical phenomena in van der Waals solids. However, theoretically they have been studied mostly using minimal periodic cells and in the context of accurate quantum simulations. Here we investigate the peeling of large-scale multilayer graphene stacks with varying thicknesses, stackings, and peeling directions by using classical molecular dynamics simulations with a registry-dependent interlayer potential. Simulations show that, while at large scale the peeling proceeds smoothly, at small scale the registry shifts and sliding patterns of the layers are unexpectedly intricate and depend both on the initial stacking and on the peeling direction. These observations indicate that peeling and concomitant kink formations may well transform stacking order and thereby profoundly influence the electronic structures of such multilayer solids.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.92.115427</identifier><language>eng</language><subject>Condensed matter ; Graphene ; Interlayers ; Multilayers ; Peeling ; Simulation ; Sliding ; Stacking</subject><ispartof>Physical review. B, 2015-09, Vol.92 (11)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Korhonen, Topi</creatorcontrib><creatorcontrib>Koskinen, Pekka</creatorcontrib><title>Peeling of multilayer graphene creates complex interlayer sliding patterns</title><title>Physical review. B</title><description>Peeling, shearing, and sliding are important mechanical phenomena in van der Waals solids. However, theoretically they have been studied mostly using minimal periodic cells and in the context of accurate quantum simulations. Here we investigate the peeling of large-scale multilayer graphene stacks with varying thicknesses, stackings, and peeling directions by using classical molecular dynamics simulations with a registry-dependent interlayer potential. Simulations show that, while at large scale the peeling proceeds smoothly, at small scale the registry shifts and sliding patterns of the layers are unexpectedly intricate and depend both on the initial stacking and on the peeling direction. These observations indicate that peeling and concomitant kink formations may well transform stacking order and thereby profoundly influence the electronic structures of such multilayer solids.</description><subject>Condensed matter</subject><subject>Graphene</subject><subject>Interlayers</subject><subject>Multilayers</subject><subject>Peeling</subject><subject>Simulation</subject><subject>Sliding</subject><subject>Stacking</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9jMtOwzAURC0EElXpD7Dykk3KvYnj2EuoeKoSFYJ15djXbZCbhNhB9O8pKmI1o6Mzw9glwhwRiuvVdh9f6et2rvMDKEVenbBJLqTOtJb69L-XcM5mMX4AAErQFegJe14Rhabd8M7z3RhSE8yeBr4ZTL-llrgdyCSK3Ha7PtA3b9pEw9GJoXG_y96kA2vjBTvzJkSa_eWUvd_fvS0es-XLw9PiZpn1iCplTlIptckBhQfhagelAG-9db7W3hbkiAiFVLJ0opS5KCoFCmudE0rEopiyq-NvP3SfI8W03jXRUgimpW6Ma6yURKVQqOIHfn9UWw</recordid><startdate>20150917</startdate><enddate>20150917</enddate><creator>Korhonen, Topi</creator><creator>Koskinen, Pekka</creator><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150917</creationdate><title>Peeling of multilayer graphene creates complex interlayer sliding patterns</title><author>Korhonen, Topi ; Koskinen, Pekka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p118t-d6e569a2014f04dbd0540fcfcdfb9fc3edeee146865d45624378081b92e161133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Condensed matter</topic><topic>Graphene</topic><topic>Interlayers</topic><topic>Multilayers</topic><topic>Peeling</topic><topic>Simulation</topic><topic>Sliding</topic><topic>Stacking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korhonen, Topi</creatorcontrib><creatorcontrib>Koskinen, Pekka</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korhonen, Topi</au><au>Koskinen, Pekka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Peeling of multilayer graphene creates complex interlayer sliding patterns</atitle><jtitle>Physical review. B</jtitle><date>2015-09-17</date><risdate>2015</risdate><volume>92</volume><issue>11</issue><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Peeling, shearing, and sliding are important mechanical phenomena in van der Waals solids. However, theoretically they have been studied mostly using minimal periodic cells and in the context of accurate quantum simulations. Here we investigate the peeling of large-scale multilayer graphene stacks with varying thicknesses, stackings, and peeling directions by using classical molecular dynamics simulations with a registry-dependent interlayer potential. Simulations show that, while at large scale the peeling proceeds smoothly, at small scale the registry shifts and sliding patterns of the layers are unexpectedly intricate and depend both on the initial stacking and on the peeling direction. These observations indicate that peeling and concomitant kink formations may well transform stacking order and thereby profoundly influence the electronic structures of such multilayer solids.</abstract><doi>10.1103/PhysRevB.92.115427</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2015-09, Vol.92 (11)
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_miscellaneous_1786188148
source American Physical Society Journals
subjects Condensed matter
Graphene
Interlayers
Multilayers
Peeling
Simulation
Sliding
Stacking
title Peeling of multilayer graphene creates complex interlayer sliding patterns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T17%3A23%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Peeling%20of%20multilayer%20graphene%20creates%20complex%20interlayer%20sliding%20patterns&rft.jtitle=Physical%20review.%20B&rft.au=Korhonen,%20Topi&rft.date=2015-09-17&rft.volume=92&rft.issue=11&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.92.115427&rft_dat=%3Cproquest%3E1786188148%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786188148&rft_id=info:pmid/&rfr_iscdi=true