The GA-ANN expert system for mass-model classification of TSTO surrogates

A hybrid-heuristic machine learning methodology, based on hybrid genetic algorithm (GA) and artificial neural network (ANN) data classification methods is proposed as an expert system for assessing viability of surrogates of a two-stage-to-orbit (TSTO) vehicle. The methodology is integral to the inv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aerospace science and technology 2016-01, Vol.48, p.146-157
Hauptverfasser: Sarosh, Ali, Yun-Feng, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 157
container_issue
container_start_page 146
container_title Aerospace science and technology
container_volume 48
creator Sarosh, Ali
Yun-Feng, Dong
description A hybrid-heuristic machine learning methodology, based on hybrid genetic algorithm (GA) and artificial neural network (ANN) data classification methods is proposed as an expert system for assessing viability of surrogates of a two-stage-to-orbit (TSTO) vehicle. The methodology is integral to the inverse design method for spaceplane systems. Since spaceplanes do not exist therefore archival mass-model data is also non-existent and inverse design method is used to generate optimal vehicle configuration data. The GA-ANN offers an expert system whereby when a new vehicle configuration is evolved its mass-model is first optimized using GA and then the optimal solution is processed through the ANN classifier to assess the viability of solution. If classification result fails the process is repeated until a qualified result is obtained. Results are validated using mass-model parameters of HTSM (hypersonic transport system Munich) vehicles.
doi_str_mv 10.1016/j.ast.2015.09.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786187821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1270963815002631</els_id><sourcerecordid>1786187821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-9a655b8d091515070d0c4a59c778f2a6822ab6c1ba28f4a4c779fbe8ece040ae3</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhiMEEqXwAGweWRLOTuLYYqoqKJWqdiDMluNcwFVSFztF9O1xVWam-3X6v5PuS5J7ChkFyh-3mQ5jxoCWGcgMoLxIJpQznuaMysuYWQWp5Lm4Tm5C2AIAkwWbJMv6E8lils7Wa4I_e_QjCccw4kA658mgQ0gH12JPTB-z7azRo3U74jpSv9UbEg7euw89YrhNrjrdB7z7m9Pk_eW5nr-mq81iOZ-tUpPnMKZS87JsRAuSlrSEClowhS6lqSrRMc0FY7rhhjaaia7QRdzLrkGBBqEAjfk0eTjf3Xv3dcAwqsEGg32vd-gOQdFKcCoqwWis0nPVeBeCx07tvR20PyoK6qRNbVXUpk7aFEgVtUXm6cxg_OHbolfBWNwZbK1HM6rW2X_oX-UQdLc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786187821</pqid></control><display><type>article</type><title>The GA-ANN expert system for mass-model classification of TSTO surrogates</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Sarosh, Ali ; Yun-Feng, Dong</creator><creatorcontrib>Sarosh, Ali ; Yun-Feng, Dong</creatorcontrib><description>A hybrid-heuristic machine learning methodology, based on hybrid genetic algorithm (GA) and artificial neural network (ANN) data classification methods is proposed as an expert system for assessing viability of surrogates of a two-stage-to-orbit (TSTO) vehicle. The methodology is integral to the inverse design method for spaceplane systems. Since spaceplanes do not exist therefore archival mass-model data is also non-existent and inverse design method is used to generate optimal vehicle configuration data. The GA-ANN offers an expert system whereby when a new vehicle configuration is evolved its mass-model is first optimized using GA and then the optimal solution is processed through the ANN classifier to assess the viability of solution. If classification result fails the process is repeated until a qualified result is obtained. Results are validated using mass-model parameters of HTSM (hypersonic transport system Munich) vehicles.</description><identifier>ISSN: 1270-9638</identifier><identifier>EISSN: 1626-3219</identifier><identifier>DOI: 10.1016/j.ast.2015.09.005</identifier><language>eng</language><publisher>Elsevier Masson SAS</publisher><subject>Artificial neural network ; Classification ; Expert system ; Expert systems ; Genetic algorithms ; Hybrid genetic algorithm ; Inverse design ; Learning theory ; Mass-modeling ; Neural networks ; Spaceplanes ; TSTO vehicle configurations ; Vehicles</subject><ispartof>Aerospace science and technology, 2016-01, Vol.48, p.146-157</ispartof><rights>2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-9a655b8d091515070d0c4a59c778f2a6822ab6c1ba28f4a4c779fbe8ece040ae3</citedby><cites>FETCH-LOGICAL-c330t-9a655b8d091515070d0c4a59c778f2a6822ab6c1ba28f4a4c779fbe8ece040ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ast.2015.09.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Sarosh, Ali</creatorcontrib><creatorcontrib>Yun-Feng, Dong</creatorcontrib><title>The GA-ANN expert system for mass-model classification of TSTO surrogates</title><title>Aerospace science and technology</title><description>A hybrid-heuristic machine learning methodology, based on hybrid genetic algorithm (GA) and artificial neural network (ANN) data classification methods is proposed as an expert system for assessing viability of surrogates of a two-stage-to-orbit (TSTO) vehicle. The methodology is integral to the inverse design method for spaceplane systems. Since spaceplanes do not exist therefore archival mass-model data is also non-existent and inverse design method is used to generate optimal vehicle configuration data. The GA-ANN offers an expert system whereby when a new vehicle configuration is evolved its mass-model is first optimized using GA and then the optimal solution is processed through the ANN classifier to assess the viability of solution. If classification result fails the process is repeated until a qualified result is obtained. Results are validated using mass-model parameters of HTSM (hypersonic transport system Munich) vehicles.</description><subject>Artificial neural network</subject><subject>Classification</subject><subject>Expert system</subject><subject>Expert systems</subject><subject>Genetic algorithms</subject><subject>Hybrid genetic algorithm</subject><subject>Inverse design</subject><subject>Learning theory</subject><subject>Mass-modeling</subject><subject>Neural networks</subject><subject>Spaceplanes</subject><subject>TSTO vehicle configurations</subject><subject>Vehicles</subject><issn>1270-9638</issn><issn>1626-3219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhiMEEqXwAGweWRLOTuLYYqoqKJWqdiDMluNcwFVSFztF9O1xVWam-3X6v5PuS5J7ChkFyh-3mQ5jxoCWGcgMoLxIJpQznuaMysuYWQWp5Lm4Tm5C2AIAkwWbJMv6E8lils7Wa4I_e_QjCccw4kA658mgQ0gH12JPTB-z7azRo3U74jpSv9UbEg7euw89YrhNrjrdB7z7m9Pk_eW5nr-mq81iOZ-tUpPnMKZS87JsRAuSlrSEClowhS6lqSrRMc0FY7rhhjaaia7QRdzLrkGBBqEAjfk0eTjf3Xv3dcAwqsEGg32vd-gOQdFKcCoqwWis0nPVeBeCx07tvR20PyoK6qRNbVXUpk7aFEgVtUXm6cxg_OHbolfBWNwZbK1HM6rW2X_oX-UQdLc</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Sarosh, Ali</creator><creator>Yun-Feng, Dong</creator><general>Elsevier Masson SAS</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201601</creationdate><title>The GA-ANN expert system for mass-model classification of TSTO surrogates</title><author>Sarosh, Ali ; Yun-Feng, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-9a655b8d091515070d0c4a59c778f2a6822ab6c1ba28f4a4c779fbe8ece040ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Artificial neural network</topic><topic>Classification</topic><topic>Expert system</topic><topic>Expert systems</topic><topic>Genetic algorithms</topic><topic>Hybrid genetic algorithm</topic><topic>Inverse design</topic><topic>Learning theory</topic><topic>Mass-modeling</topic><topic>Neural networks</topic><topic>Spaceplanes</topic><topic>TSTO vehicle configurations</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarosh, Ali</creatorcontrib><creatorcontrib>Yun-Feng, Dong</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Aerospace science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarosh, Ali</au><au>Yun-Feng, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The GA-ANN expert system for mass-model classification of TSTO surrogates</atitle><jtitle>Aerospace science and technology</jtitle><date>2016-01</date><risdate>2016</risdate><volume>48</volume><spage>146</spage><epage>157</epage><pages>146-157</pages><issn>1270-9638</issn><eissn>1626-3219</eissn><abstract>A hybrid-heuristic machine learning methodology, based on hybrid genetic algorithm (GA) and artificial neural network (ANN) data classification methods is proposed as an expert system for assessing viability of surrogates of a two-stage-to-orbit (TSTO) vehicle. The methodology is integral to the inverse design method for spaceplane systems. Since spaceplanes do not exist therefore archival mass-model data is also non-existent and inverse design method is used to generate optimal vehicle configuration data. The GA-ANN offers an expert system whereby when a new vehicle configuration is evolved its mass-model is first optimized using GA and then the optimal solution is processed through the ANN classifier to assess the viability of solution. If classification result fails the process is repeated until a qualified result is obtained. Results are validated using mass-model parameters of HTSM (hypersonic transport system Munich) vehicles.</abstract><pub>Elsevier Masson SAS</pub><doi>10.1016/j.ast.2015.09.005</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1270-9638
ispartof Aerospace science and technology, 2016-01, Vol.48, p.146-157
issn 1270-9638
1626-3219
language eng
recordid cdi_proquest_miscellaneous_1786187821
source Elsevier ScienceDirect Journals Complete
subjects Artificial neural network
Classification
Expert system
Expert systems
Genetic algorithms
Hybrid genetic algorithm
Inverse design
Learning theory
Mass-modeling
Neural networks
Spaceplanes
TSTO vehicle configurations
Vehicles
title The GA-ANN expert system for mass-model classification of TSTO surrogates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A57%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20GA-ANN%20expert%20system%20for%20mass-model%20classification%20of%20TSTO%20surrogates&rft.jtitle=Aerospace%20science%20and%20technology&rft.au=Sarosh,%20Ali&rft.date=2016-01&rft.volume=48&rft.spage=146&rft.epage=157&rft.pages=146-157&rft.issn=1270-9638&rft.eissn=1626-3219&rft_id=info:doi/10.1016/j.ast.2015.09.005&rft_dat=%3Cproquest_cross%3E1786187821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786187821&rft_id=info:pmid/&rft_els_id=S1270963815002631&rfr_iscdi=true