The GA-ANN expert system for mass-model classification of TSTO surrogates
A hybrid-heuristic machine learning methodology, based on hybrid genetic algorithm (GA) and artificial neural network (ANN) data classification methods is proposed as an expert system for assessing viability of surrogates of a two-stage-to-orbit (TSTO) vehicle. The methodology is integral to the inv...
Gespeichert in:
Veröffentlicht in: | Aerospace science and technology 2016-01, Vol.48, p.146-157 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 157 |
---|---|
container_issue | |
container_start_page | 146 |
container_title | Aerospace science and technology |
container_volume | 48 |
creator | Sarosh, Ali Yun-Feng, Dong |
description | A hybrid-heuristic machine learning methodology, based on hybrid genetic algorithm (GA) and artificial neural network (ANN) data classification methods is proposed as an expert system for assessing viability of surrogates of a two-stage-to-orbit (TSTO) vehicle. The methodology is integral to the inverse design method for spaceplane systems. Since spaceplanes do not exist therefore archival mass-model data is also non-existent and inverse design method is used to generate optimal vehicle configuration data. The GA-ANN offers an expert system whereby when a new vehicle configuration is evolved its mass-model is first optimized using GA and then the optimal solution is processed through the ANN classifier to assess the viability of solution. If classification result fails the process is repeated until a qualified result is obtained. Results are validated using mass-model parameters of HTSM (hypersonic transport system Munich) vehicles. |
doi_str_mv | 10.1016/j.ast.2015.09.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786187821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1270963815002631</els_id><sourcerecordid>1786187821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-9a655b8d091515070d0c4a59c778f2a6822ab6c1ba28f4a4c779fbe8ece040ae3</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhiMEEqXwAGweWRLOTuLYYqoqKJWqdiDMluNcwFVSFztF9O1xVWam-3X6v5PuS5J7ChkFyh-3mQ5jxoCWGcgMoLxIJpQznuaMysuYWQWp5Lm4Tm5C2AIAkwWbJMv6E8lils7Wa4I_e_QjCccw4kA658mgQ0gH12JPTB-z7azRo3U74jpSv9UbEg7euw89YrhNrjrdB7z7m9Pk_eW5nr-mq81iOZ-tUpPnMKZS87JsRAuSlrSEClowhS6lqSrRMc0FY7rhhjaaia7QRdzLrkGBBqEAjfk0eTjf3Xv3dcAwqsEGg32vd-gOQdFKcCoqwWis0nPVeBeCx07tvR20PyoK6qRNbVXUpk7aFEgVtUXm6cxg_OHbolfBWNwZbK1HM6rW2X_oX-UQdLc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786187821</pqid></control><display><type>article</type><title>The GA-ANN expert system for mass-model classification of TSTO surrogates</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Sarosh, Ali ; Yun-Feng, Dong</creator><creatorcontrib>Sarosh, Ali ; Yun-Feng, Dong</creatorcontrib><description>A hybrid-heuristic machine learning methodology, based on hybrid genetic algorithm (GA) and artificial neural network (ANN) data classification methods is proposed as an expert system for assessing viability of surrogates of a two-stage-to-orbit (TSTO) vehicle. The methodology is integral to the inverse design method for spaceplane systems. Since spaceplanes do not exist therefore archival mass-model data is also non-existent and inverse design method is used to generate optimal vehicle configuration data. The GA-ANN offers an expert system whereby when a new vehicle configuration is evolved its mass-model is first optimized using GA and then the optimal solution is processed through the ANN classifier to assess the viability of solution. If classification result fails the process is repeated until a qualified result is obtained. Results are validated using mass-model parameters of HTSM (hypersonic transport system Munich) vehicles.</description><identifier>ISSN: 1270-9638</identifier><identifier>EISSN: 1626-3219</identifier><identifier>DOI: 10.1016/j.ast.2015.09.005</identifier><language>eng</language><publisher>Elsevier Masson SAS</publisher><subject>Artificial neural network ; Classification ; Expert system ; Expert systems ; Genetic algorithms ; Hybrid genetic algorithm ; Inverse design ; Learning theory ; Mass-modeling ; Neural networks ; Spaceplanes ; TSTO vehicle configurations ; Vehicles</subject><ispartof>Aerospace science and technology, 2016-01, Vol.48, p.146-157</ispartof><rights>2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-9a655b8d091515070d0c4a59c778f2a6822ab6c1ba28f4a4c779fbe8ece040ae3</citedby><cites>FETCH-LOGICAL-c330t-9a655b8d091515070d0c4a59c778f2a6822ab6c1ba28f4a4c779fbe8ece040ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ast.2015.09.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Sarosh, Ali</creatorcontrib><creatorcontrib>Yun-Feng, Dong</creatorcontrib><title>The GA-ANN expert system for mass-model classification of TSTO surrogates</title><title>Aerospace science and technology</title><description>A hybrid-heuristic machine learning methodology, based on hybrid genetic algorithm (GA) and artificial neural network (ANN) data classification methods is proposed as an expert system for assessing viability of surrogates of a two-stage-to-orbit (TSTO) vehicle. The methodology is integral to the inverse design method for spaceplane systems. Since spaceplanes do not exist therefore archival mass-model data is also non-existent and inverse design method is used to generate optimal vehicle configuration data. The GA-ANN offers an expert system whereby when a new vehicle configuration is evolved its mass-model is first optimized using GA and then the optimal solution is processed through the ANN classifier to assess the viability of solution. If classification result fails the process is repeated until a qualified result is obtained. Results are validated using mass-model parameters of HTSM (hypersonic transport system Munich) vehicles.</description><subject>Artificial neural network</subject><subject>Classification</subject><subject>Expert system</subject><subject>Expert systems</subject><subject>Genetic algorithms</subject><subject>Hybrid genetic algorithm</subject><subject>Inverse design</subject><subject>Learning theory</subject><subject>Mass-modeling</subject><subject>Neural networks</subject><subject>Spaceplanes</subject><subject>TSTO vehicle configurations</subject><subject>Vehicles</subject><issn>1270-9638</issn><issn>1626-3219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhiMEEqXwAGweWRLOTuLYYqoqKJWqdiDMluNcwFVSFztF9O1xVWam-3X6v5PuS5J7ChkFyh-3mQ5jxoCWGcgMoLxIJpQznuaMysuYWQWp5Lm4Tm5C2AIAkwWbJMv6E8lils7Wa4I_e_QjCccw4kA658mgQ0gH12JPTB-z7azRo3U74jpSv9UbEg7euw89YrhNrjrdB7z7m9Pk_eW5nr-mq81iOZ-tUpPnMKZS87JsRAuSlrSEClowhS6lqSrRMc0FY7rhhjaaia7QRdzLrkGBBqEAjfk0eTjf3Xv3dcAwqsEGg32vd-gOQdFKcCoqwWis0nPVeBeCx07tvR20PyoK6qRNbVXUpk7aFEgVtUXm6cxg_OHbolfBWNwZbK1HM6rW2X_oX-UQdLc</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Sarosh, Ali</creator><creator>Yun-Feng, Dong</creator><general>Elsevier Masson SAS</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201601</creationdate><title>The GA-ANN expert system for mass-model classification of TSTO surrogates</title><author>Sarosh, Ali ; Yun-Feng, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-9a655b8d091515070d0c4a59c778f2a6822ab6c1ba28f4a4c779fbe8ece040ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Artificial neural network</topic><topic>Classification</topic><topic>Expert system</topic><topic>Expert systems</topic><topic>Genetic algorithms</topic><topic>Hybrid genetic algorithm</topic><topic>Inverse design</topic><topic>Learning theory</topic><topic>Mass-modeling</topic><topic>Neural networks</topic><topic>Spaceplanes</topic><topic>TSTO vehicle configurations</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarosh, Ali</creatorcontrib><creatorcontrib>Yun-Feng, Dong</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Aerospace science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarosh, Ali</au><au>Yun-Feng, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The GA-ANN expert system for mass-model classification of TSTO surrogates</atitle><jtitle>Aerospace science and technology</jtitle><date>2016-01</date><risdate>2016</risdate><volume>48</volume><spage>146</spage><epage>157</epage><pages>146-157</pages><issn>1270-9638</issn><eissn>1626-3219</eissn><abstract>A hybrid-heuristic machine learning methodology, based on hybrid genetic algorithm (GA) and artificial neural network (ANN) data classification methods is proposed as an expert system for assessing viability of surrogates of a two-stage-to-orbit (TSTO) vehicle. The methodology is integral to the inverse design method for spaceplane systems. Since spaceplanes do not exist therefore archival mass-model data is also non-existent and inverse design method is used to generate optimal vehicle configuration data. The GA-ANN offers an expert system whereby when a new vehicle configuration is evolved its mass-model is first optimized using GA and then the optimal solution is processed through the ANN classifier to assess the viability of solution. If classification result fails the process is repeated until a qualified result is obtained. Results are validated using mass-model parameters of HTSM (hypersonic transport system Munich) vehicles.</abstract><pub>Elsevier Masson SAS</pub><doi>10.1016/j.ast.2015.09.005</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1270-9638 |
ispartof | Aerospace science and technology, 2016-01, Vol.48, p.146-157 |
issn | 1270-9638 1626-3219 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786187821 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Artificial neural network Classification Expert system Expert systems Genetic algorithms Hybrid genetic algorithm Inverse design Learning theory Mass-modeling Neural networks Spaceplanes TSTO vehicle configurations Vehicles |
title | The GA-ANN expert system for mass-model classification of TSTO surrogates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A57%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20GA-ANN%20expert%20system%20for%20mass-model%20classification%20of%20TSTO%20surrogates&rft.jtitle=Aerospace%20science%20and%20technology&rft.au=Sarosh,%20Ali&rft.date=2016-01&rft.volume=48&rft.spage=146&rft.epage=157&rft.pages=146-157&rft.issn=1270-9638&rft.eissn=1626-3219&rft_id=info:doi/10.1016/j.ast.2015.09.005&rft_dat=%3Cproquest_cross%3E1786187821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786187821&rft_id=info:pmid/&rft_els_id=S1270963815002631&rfr_iscdi=true |