Direct measurement of the Raman enhancement factor of rhodamine 6G on graphene under resonant excitation

Graphene substrates have recently been found to generate Raman enhancement. Systematic studies using different Raman probes have been implemented, but one of the most commonly used Raman probes, rhodamine 6G (R6G), has yielded controversial results for the enhancement effect on graphene. Indeed, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2014-09, Vol.7 (9), p.1271-1279
Hauptverfasser: Deng, Shibin, Xu, Weigao, Wang, Jinying, Ling, Xi, Wu, Juanxia, Xie, Liming, Kong, Jing, Dresselhaus, Mildred S., Zhang, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1279
container_issue 9
container_start_page 1271
container_title Nano research
container_volume 7
creator Deng, Shibin
Xu, Weigao
Wang, Jinying
Ling, Xi
Wu, Juanxia
Xie, Liming
Kong, Jing
Dresselhaus, Mildred S.
Zhang, Jin
description Graphene substrates have recently been found to generate Raman enhancement. Systematic studies using different Raman probes have been implemented, but one of the most commonly used Raman probes, rhodamine 6G (R6G), has yielded controversial results for the enhancement effect on graphene. Indeed, the Raman enhancement factor of R6G induced by graphene has never been measured directly under resonant excitation because of the presence of intense fluorescence backgrounds. In this study, a polarization-difference technique is used to suppress the fluorescence background by subtracting two spectra collected using different excitation laser polarizations. As a result, enhancement factors are obtained ranging between 1.7 and 5.6 for the four Raman modes of R6G at 611, 1,183, 1,361, and 1,647 cm-~ under resonant excitation by a 514.5 nm laser. By comparing these results with the results obtained under non-resonant excitation (632.8 nm) and pre-resonant excitation (593 nm), the enhancement can be attributed to static chemical enhancement (CHEM) and tuning of the molecular resonance. Density functional theory simulations reveal that the orbital energies and densities for R6G are modified bv ~raphene dots.
doi_str_mv 10.1007/s12274-014-0490-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786187226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>662501334</cqvip_id><sourcerecordid>3431254831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-775bef5f7a78f17b51f6a2145528d3321b51d1b9cb480e3aecaf60e283f8aa3f3</originalsourceid><addsrcrecordid>eNqFkV9rHCEUxYfQQtK0H6Bv0r7kZVqvOuo-lqRNC4FASJ7lrnvdmbCjG52B5tvHZdJS8pAK4p_7O-cqp2k-Av8CnJuvBYQwquVQp1rxVh41J7Ba2ZbX8ebPHoQ6bt6Vcs-5FqDsSdNfDJn8xEbCMmcaKU4sBTb1xG5wxMgo9hj9Ugjop5QP9dynDY5DJKYvWYpsm3HfUz3OcUOZZSopYlXQbz9MOA0pvm_eBtwV-vC8njZ3P77fnv9sr64vf51_u2q96sTUGtOtKXTBoLEBzLqDoLE-teuE3UgpoN5sYL3ya2U5SSSPQXMSVgaLKIM8bc4W331ODzOVyY1D8bTbYaQ0FwfGarBGCP1_VAsOXBmjKvr5BXqf5hzrRxx01U9wKaFSsFA-p1IyBbfPw4j50QF3h5jcEpOrMblDTE5WjVg0pbJxS_kf51dEn54b9SluH6rubyetRcdBSiWfAL0joBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1561820331</pqid></control><display><type>article</type><title>Direct measurement of the Raman enhancement factor of rhodamine 6G on graphene under resonant excitation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Deng, Shibin ; Xu, Weigao ; Wang, Jinying ; Ling, Xi ; Wu, Juanxia ; Xie, Liming ; Kong, Jing ; Dresselhaus, Mildred S. ; Zhang, Jin</creator><creatorcontrib>Deng, Shibin ; Xu, Weigao ; Wang, Jinying ; Ling, Xi ; Wu, Juanxia ; Xie, Liming ; Kong, Jing ; Dresselhaus, Mildred S. ; Zhang, Jin</creatorcontrib><description>Graphene substrates have recently been found to generate Raman enhancement. Systematic studies using different Raman probes have been implemented, but one of the most commonly used Raman probes, rhodamine 6G (R6G), has yielded controversial results for the enhancement effect on graphene. Indeed, the Raman enhancement factor of R6G induced by graphene has never been measured directly under resonant excitation because of the presence of intense fluorescence backgrounds. In this study, a polarization-difference technique is used to suppress the fluorescence background by subtracting two spectra collected using different excitation laser polarizations. As a result, enhancement factors are obtained ranging between 1.7 and 5.6 for the four Raman modes of R6G at 611, 1,183, 1,361, and 1,647 cm-~ under resonant excitation by a 514.5 nm laser. By comparing these results with the results obtained under non-resonant excitation (632.8 nm) and pre-resonant excitation (593 nm), the enhancement can be attributed to static chemical enhancement (CHEM) and tuning of the molecular resonance. Density functional theory simulations reveal that the orbital energies and densities for R6G are modified bv ~raphene dots.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-014-0490-3</identifier><language>eng</language><publisher>Heidelberg: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Computer engineering ; Condensed Matter Physics ; Density ; Excitation ; Fluorescence ; Graphene ; Laboratories ; Lasers ; Materials Science ; Nanotechnology ; Probes ; Research Article ; Rhodamine 6G ; Spectra ; Tuning ; 共振激发 ; 化学增强 ; 增强因子 ; 拉曼 ; 探头系统 ; 直接测量 ; 石墨 ; 罗丹明6G</subject><ispartof>Nano research, 2014-09, Vol.7 (9), p.1271-1279</ispartof><rights>Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-775bef5f7a78f17b51f6a2145528d3321b51d1b9cb480e3aecaf60e283f8aa3f3</citedby><cites>FETCH-LOGICAL-c452t-775bef5f7a78f17b51f6a2145528d3321b51d1b9cb480e3aecaf60e283f8aa3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-014-0490-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-014-0490-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Deng, Shibin</creatorcontrib><creatorcontrib>Xu, Weigao</creatorcontrib><creatorcontrib>Wang, Jinying</creatorcontrib><creatorcontrib>Ling, Xi</creatorcontrib><creatorcontrib>Wu, Juanxia</creatorcontrib><creatorcontrib>Xie, Liming</creatorcontrib><creatorcontrib>Kong, Jing</creatorcontrib><creatorcontrib>Dresselhaus, Mildred S.</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><title>Direct measurement of the Raman enhancement factor of rhodamine 6G on graphene under resonant excitation</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>Graphene substrates have recently been found to generate Raman enhancement. Systematic studies using different Raman probes have been implemented, but one of the most commonly used Raman probes, rhodamine 6G (R6G), has yielded controversial results for the enhancement effect on graphene. Indeed, the Raman enhancement factor of R6G induced by graphene has never been measured directly under resonant excitation because of the presence of intense fluorescence backgrounds. In this study, a polarization-difference technique is used to suppress the fluorescence background by subtracting two spectra collected using different excitation laser polarizations. As a result, enhancement factors are obtained ranging between 1.7 and 5.6 for the four Raman modes of R6G at 611, 1,183, 1,361, and 1,647 cm-~ under resonant excitation by a 514.5 nm laser. By comparing these results with the results obtained under non-resonant excitation (632.8 nm) and pre-resonant excitation (593 nm), the enhancement can be attributed to static chemical enhancement (CHEM) and tuning of the molecular resonance. Density functional theory simulations reveal that the orbital energies and densities for R6G are modified bv ~raphene dots.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer engineering</subject><subject>Condensed Matter Physics</subject><subject>Density</subject><subject>Excitation</subject><subject>Fluorescence</subject><subject>Graphene</subject><subject>Laboratories</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Probes</subject><subject>Research Article</subject><subject>Rhodamine 6G</subject><subject>Spectra</subject><subject>Tuning</subject><subject>共振激发</subject><subject>化学增强</subject><subject>增强因子</subject><subject>拉曼</subject><subject>探头系统</subject><subject>直接测量</subject><subject>石墨</subject><subject>罗丹明6G</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkV9rHCEUxYfQQtK0H6Bv0r7kZVqvOuo-lqRNC4FASJ7lrnvdmbCjG52B5tvHZdJS8pAK4p_7O-cqp2k-Av8CnJuvBYQwquVQp1rxVh41J7Ba2ZbX8ebPHoQ6bt6Vcs-5FqDsSdNfDJn8xEbCMmcaKU4sBTb1xG5wxMgo9hj9Ugjop5QP9dynDY5DJKYvWYpsm3HfUz3OcUOZZSopYlXQbz9MOA0pvm_eBtwV-vC8njZ3P77fnv9sr64vf51_u2q96sTUGtOtKXTBoLEBzLqDoLE-teuE3UgpoN5sYL3ya2U5SSSPQXMSVgaLKIM8bc4W331ODzOVyY1D8bTbYaQ0FwfGarBGCP1_VAsOXBmjKvr5BXqf5hzrRxx01U9wKaFSsFA-p1IyBbfPw4j50QF3h5jcEpOrMblDTE5WjVg0pbJxS_kf51dEn54b9SluH6rubyetRcdBSiWfAL0joBw</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Deng, Shibin</creator><creator>Xu, Weigao</creator><creator>Wang, Jinying</creator><creator>Ling, Xi</creator><creator>Wu, Juanxia</creator><creator>Xie, Liming</creator><creator>Kong, Jing</creator><creator>Dresselhaus, Mildred S.</creator><creator>Zhang, Jin</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20140901</creationdate><title>Direct measurement of the Raman enhancement factor of rhodamine 6G on graphene under resonant excitation</title><author>Deng, Shibin ; Xu, Weigao ; Wang, Jinying ; Ling, Xi ; Wu, Juanxia ; Xie, Liming ; Kong, Jing ; Dresselhaus, Mildred S. ; Zhang, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-775bef5f7a78f17b51f6a2145528d3321b51d1b9cb480e3aecaf60e283f8aa3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer engineering</topic><topic>Condensed Matter Physics</topic><topic>Density</topic><topic>Excitation</topic><topic>Fluorescence</topic><topic>Graphene</topic><topic>Laboratories</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Probes</topic><topic>Research Article</topic><topic>Rhodamine 6G</topic><topic>Spectra</topic><topic>Tuning</topic><topic>共振激发</topic><topic>化学增强</topic><topic>增强因子</topic><topic>拉曼</topic><topic>探头系统</topic><topic>直接测量</topic><topic>石墨</topic><topic>罗丹明6G</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Shibin</creatorcontrib><creatorcontrib>Xu, Weigao</creatorcontrib><creatorcontrib>Wang, Jinying</creatorcontrib><creatorcontrib>Ling, Xi</creatorcontrib><creatorcontrib>Wu, Juanxia</creatorcontrib><creatorcontrib>Xie, Liming</creatorcontrib><creatorcontrib>Kong, Jing</creatorcontrib><creatorcontrib>Dresselhaus, Mildred S.</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Shibin</au><au>Xu, Weigao</au><au>Wang, Jinying</au><au>Ling, Xi</au><au>Wu, Juanxia</au><au>Xie, Liming</au><au>Kong, Jing</au><au>Dresselhaus, Mildred S.</au><au>Zhang, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct measurement of the Raman enhancement factor of rhodamine 6G on graphene under resonant excitation</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>7</volume><issue>9</issue><spage>1271</spage><epage>1279</epage><pages>1271-1279</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Graphene substrates have recently been found to generate Raman enhancement. Systematic studies using different Raman probes have been implemented, but one of the most commonly used Raman probes, rhodamine 6G (R6G), has yielded controversial results for the enhancement effect on graphene. Indeed, the Raman enhancement factor of R6G induced by graphene has never been measured directly under resonant excitation because of the presence of intense fluorescence backgrounds. In this study, a polarization-difference technique is used to suppress the fluorescence background by subtracting two spectra collected using different excitation laser polarizations. As a result, enhancement factors are obtained ranging between 1.7 and 5.6 for the four Raman modes of R6G at 611, 1,183, 1,361, and 1,647 cm-~ under resonant excitation by a 514.5 nm laser. By comparing these results with the results obtained under non-resonant excitation (632.8 nm) and pre-resonant excitation (593 nm), the enhancement can be attributed to static chemical enhancement (CHEM) and tuning of the molecular resonance. Density functional theory simulations reveal that the orbital energies and densities for R6G are modified bv ~raphene dots.</abstract><cop>Heidelberg</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-014-0490-3</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2014-09, Vol.7 (9), p.1271-1279
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_miscellaneous_1786187226
source SpringerLink Journals - AutoHoldings
subjects Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Chemistry
Chemistry and Materials Science
Computer engineering
Condensed Matter Physics
Density
Excitation
Fluorescence
Graphene
Laboratories
Lasers
Materials Science
Nanotechnology
Probes
Research Article
Rhodamine 6G
Spectra
Tuning
共振激发
化学增强
增强因子
拉曼
探头系统
直接测量
石墨
罗丹明6G
title Direct measurement of the Raman enhancement factor of rhodamine 6G on graphene under resonant excitation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A54%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20measurement%20of%20the%20Raman%20enhancement%20factor%20of%20rhodamine%206G%20on%20graphene%20under%20resonant%20excitation&rft.jtitle=Nano%20research&rft.au=Deng,%20Shibin&rft.date=2014-09-01&rft.volume=7&rft.issue=9&rft.spage=1271&rft.epage=1279&rft.pages=1271-1279&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-014-0490-3&rft_dat=%3Cproquest_cross%3E3431254831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1561820331&rft_id=info:pmid/&rft_cqvip_id=662501334&rfr_iscdi=true