Robust classification system with reliability prediction for semi-automatic traffic-sign inventory systems

Inventories of traffic signs are acquired from street-level images in a semi-automated fashion, employing object detection and classification techniques. This is a challenging task, as signs are captured from different viewpoints and under various weather conditions. Furthermore, many similar signs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hazelhoff, L., Creusen, I., de With, P. H. N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 132
container_issue
container_start_page 125
container_title
container_volume
creator Hazelhoff, L.
Creusen, I.
de With, P. H. N.
description Inventories of traffic signs are acquired from street-level images in a semi-automated fashion, employing object detection and classification techniques. This is a challenging task, as signs are captured from different viewpoints and under various weather conditions. Furthermore, many similar signs exist, only differing in minor details, and moreover, sign-like objects occur frequently. Consequently, current state-of-the-art systems are unable to reach the required quality level, implying the need for manual corrections. This involves checking all classification results to correct the small minority of misclassifications. This paper presents a classification approach aiming at both high recognition scores and predicting the reliability of the classification output, enabling selective manual intervention. Two reliability prediction methods are compared, analyzing either the classifier scores, or matching the input samples with predefined templates. Large-scale experiments performed for three sign classes, each containing numerous sign types, show that over 80% of the correctly classified results can be marked as reliable, while not marking any misclassifications as reliable. Hence, our research shows that a reliable prediction is possible and that manual invention can be concentrated to the about 25% remaining samples only. Overall, 92.7% of the 8, 159 signs are classified correctly.
doi_str_mv 10.1109/WACV.2013.6475009
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786186915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6475009</ieee_id><sourcerecordid>1786186915</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-bd299db724f85f057c543e7afed8b0d756db66003be1bf2f41b360c703f6cc1f3</originalsourceid><addsrcrecordid>eNpVkDlPAzEYRM0lEYX8AETjkmbD5_W1LqOIS4qEhDjKle21wdEewXZA---JSBqqKebNKwahSwJzQkDdvC-Wb_MSCJ0LJjmAOkIzJSvChKQcOFPHaFIKVhaKVuTkX0fLUzQhnEPBpYJzNEtpDQAEKBOKTdD6eTDblLFtdUrBB6tzGHqcxpRdh39C_sTRtUGb0IY84k10TbB_iB8iTq4Lhd7modvNLM5R-52iSOGjx6H_dn0e4niQpQt05nWb3OyQU_R6d_uyfChWT_ePy8WqCCVUuTBNqVRjZMl8xT1waTmjTmrvmspAI7lojBAA1DhifOkZMVSAlUC9sJZ4OkXXe-8mDl9bl3LdhWRd2-reDdtUE1kJUglF-A692qPBOVdvYuh0HOvDyfQXU5RujA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1786186915</pqid></control><display><type>conference_proceeding</type><title>Robust classification system with reliability prediction for semi-automatic traffic-sign inventory systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hazelhoff, L. ; Creusen, I. ; de With, P. H. N.</creator><creatorcontrib>Hazelhoff, L. ; Creusen, I. ; de With, P. H. N.</creatorcontrib><description>Inventories of traffic signs are acquired from street-level images in a semi-automated fashion, employing object detection and classification techniques. This is a challenging task, as signs are captured from different viewpoints and under various weather conditions. Furthermore, many similar signs exist, only differing in minor details, and moreover, sign-like objects occur frequently. Consequently, current state-of-the-art systems are unable to reach the required quality level, implying the need for manual corrections. This involves checking all classification results to correct the small minority of misclassifications. This paper presents a classification approach aiming at both high recognition scores and predicting the reliability of the classification output, enabling selective manual intervention. Two reliability prediction methods are compared, analyzing either the classifier scores, or matching the input samples with predefined templates. Large-scale experiments performed for three sign classes, each containing numerous sign types, show that over 80% of the correctly classified results can be marked as reliable, while not marking any misclassifications as reliable. Hence, our research shows that a reliable prediction is possible and that manual invention can be concentrated to the about 25% remaining samples only. Overall, 92.7% of the 8, 159 signs are classified correctly.</description><identifier>ISSN: 1550-5790</identifier><identifier>ISBN: 9781467350532</identifier><identifier>ISBN: 1467350532</identifier><identifier>EISSN: 2642-9381</identifier><identifier>EISSN: 1550-5790</identifier><identifier>EISBN: 9781467350549</identifier><identifier>EISBN: 1467350524</identifier><identifier>EISBN: 9781467350525</identifier><identifier>EISBN: 1467350540</identifier><identifier>DOI: 10.1109/WACV.2013.6475009</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Classification ; Computer vision ; Feature extraction ; Image detection ; Inventions ; Inventory management ; Manuals ; Reliability ; Road safety ; State of the art ; Training ; Workshops</subject><ispartof>2013 IEEE Workshop on Applications of Computer Vision (WACV), 2013, p.125-132</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6475009$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,2052,27901,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6475009$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hazelhoff, L.</creatorcontrib><creatorcontrib>Creusen, I.</creatorcontrib><creatorcontrib>de With, P. H. N.</creatorcontrib><title>Robust classification system with reliability prediction for semi-automatic traffic-sign inventory systems</title><title>2013 IEEE Workshop on Applications of Computer Vision (WACV)</title><addtitle>WACV</addtitle><description>Inventories of traffic signs are acquired from street-level images in a semi-automated fashion, employing object detection and classification techniques. This is a challenging task, as signs are captured from different viewpoints and under various weather conditions. Furthermore, many similar signs exist, only differing in minor details, and moreover, sign-like objects occur frequently. Consequently, current state-of-the-art systems are unable to reach the required quality level, implying the need for manual corrections. This involves checking all classification results to correct the small minority of misclassifications. This paper presents a classification approach aiming at both high recognition scores and predicting the reliability of the classification output, enabling selective manual intervention. Two reliability prediction methods are compared, analyzing either the classifier scores, or matching the input samples with predefined templates. Large-scale experiments performed for three sign classes, each containing numerous sign types, show that over 80% of the correctly classified results can be marked as reliable, while not marking any misclassifications as reliable. Hence, our research shows that a reliable prediction is possible and that manual invention can be concentrated to the about 25% remaining samples only. Overall, 92.7% of the 8, 159 signs are classified correctly.</description><subject>Accuracy</subject><subject>Classification</subject><subject>Computer vision</subject><subject>Feature extraction</subject><subject>Image detection</subject><subject>Inventions</subject><subject>Inventory management</subject><subject>Manuals</subject><subject>Reliability</subject><subject>Road safety</subject><subject>State of the art</subject><subject>Training</subject><subject>Workshops</subject><issn>1550-5790</issn><issn>2642-9381</issn><issn>1550-5790</issn><isbn>9781467350532</isbn><isbn>1467350532</isbn><isbn>9781467350549</isbn><isbn>1467350524</isbn><isbn>9781467350525</isbn><isbn>1467350540</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkDlPAzEYRM0lEYX8AETjkmbD5_W1LqOIS4qEhDjKle21wdEewXZA---JSBqqKebNKwahSwJzQkDdvC-Wb_MSCJ0LJjmAOkIzJSvChKQcOFPHaFIKVhaKVuTkX0fLUzQhnEPBpYJzNEtpDQAEKBOKTdD6eTDblLFtdUrBB6tzGHqcxpRdh39C_sTRtUGb0IY84k10TbB_iB8iTq4Lhd7modvNLM5R-52iSOGjx6H_dn0e4niQpQt05nWb3OyQU_R6d_uyfChWT_ePy8WqCCVUuTBNqVRjZMl8xT1waTmjTmrvmspAI7lojBAA1DhifOkZMVSAlUC9sJZ4OkXXe-8mDl9bl3LdhWRd2-reDdtUE1kJUglF-A692qPBOVdvYuh0HOvDyfQXU5RujA</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Hazelhoff, L.</creator><creator>Creusen, I.</creator><creator>de With, P. H. N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201301</creationdate><title>Robust classification system with reliability prediction for semi-automatic traffic-sign inventory systems</title><author>Hazelhoff, L. ; Creusen, I. ; de With, P. H. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-bd299db724f85f057c543e7afed8b0d756db66003be1bf2f41b360c703f6cc1f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Classification</topic><topic>Computer vision</topic><topic>Feature extraction</topic><topic>Image detection</topic><topic>Inventions</topic><topic>Inventory management</topic><topic>Manuals</topic><topic>Reliability</topic><topic>Road safety</topic><topic>State of the art</topic><topic>Training</topic><topic>Workshops</topic><toplevel>online_resources</toplevel><creatorcontrib>Hazelhoff, L.</creatorcontrib><creatorcontrib>Creusen, I.</creatorcontrib><creatorcontrib>de With, P. H. N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hazelhoff, L.</au><au>Creusen, I.</au><au>de With, P. H. N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust classification system with reliability prediction for semi-automatic traffic-sign inventory systems</atitle><btitle>2013 IEEE Workshop on Applications of Computer Vision (WACV)</btitle><stitle>WACV</stitle><date>2013-01</date><risdate>2013</risdate><spage>125</spage><epage>132</epage><pages>125-132</pages><issn>1550-5790</issn><eissn>2642-9381</eissn><eissn>1550-5790</eissn><isbn>9781467350532</isbn><isbn>1467350532</isbn><eisbn>9781467350549</eisbn><eisbn>1467350524</eisbn><eisbn>9781467350525</eisbn><eisbn>1467350540</eisbn><abstract>Inventories of traffic signs are acquired from street-level images in a semi-automated fashion, employing object detection and classification techniques. This is a challenging task, as signs are captured from different viewpoints and under various weather conditions. Furthermore, many similar signs exist, only differing in minor details, and moreover, sign-like objects occur frequently. Consequently, current state-of-the-art systems are unable to reach the required quality level, implying the need for manual corrections. This involves checking all classification results to correct the small minority of misclassifications. This paper presents a classification approach aiming at both high recognition scores and predicting the reliability of the classification output, enabling selective manual intervention. Two reliability prediction methods are compared, analyzing either the classifier scores, or matching the input samples with predefined templates. Large-scale experiments performed for three sign classes, each containing numerous sign types, show that over 80% of the correctly classified results can be marked as reliable, while not marking any misclassifications as reliable. Hence, our research shows that a reliable prediction is possible and that manual invention can be concentrated to the about 25% remaining samples only. Overall, 92.7% of the 8, 159 signs are classified correctly.</abstract><pub>IEEE</pub><doi>10.1109/WACV.2013.6475009</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-5790
ispartof 2013 IEEE Workshop on Applications of Computer Vision (WACV), 2013, p.125-132
issn 1550-5790
2642-9381
1550-5790
language eng
recordid cdi_proquest_miscellaneous_1786186915
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Classification
Computer vision
Feature extraction
Image detection
Inventions
Inventory management
Manuals
Reliability
Road safety
State of the art
Training
Workshops
title Robust classification system with reliability prediction for semi-automatic traffic-sign inventory systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A34%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20classification%20system%20with%20reliability%20prediction%20for%20semi-automatic%20traffic-sign%20inventory%20systems&rft.btitle=2013%20IEEE%20Workshop%20on%20Applications%20of%20Computer%20Vision%20(WACV)&rft.au=Hazelhoff,%20L.&rft.date=2013-01&rft.spage=125&rft.epage=132&rft.pages=125-132&rft.issn=1550-5790&rft.eissn=2642-9381&rft.isbn=9781467350532&rft.isbn_list=1467350532&rft_id=info:doi/10.1109/WACV.2013.6475009&rft_dat=%3Cproquest_6IE%3E1786186915%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467350549&rft.eisbn_list=1467350524&rft.eisbn_list=9781467350525&rft.eisbn_list=1467350540&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786186915&rft_id=info:pmid/&rft_ieee_id=6475009&rfr_iscdi=true