Robust classification system with reliability prediction for semi-automatic traffic-sign inventory systems
Inventories of traffic signs are acquired from street-level images in a semi-automated fashion, employing object detection and classification techniques. This is a challenging task, as signs are captured from different viewpoints and under various weather conditions. Furthermore, many similar signs...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 132 |
---|---|
container_issue | |
container_start_page | 125 |
container_title | |
container_volume | |
creator | Hazelhoff, L. Creusen, I. de With, P. H. N. |
description | Inventories of traffic signs are acquired from street-level images in a semi-automated fashion, employing object detection and classification techniques. This is a challenging task, as signs are captured from different viewpoints and under various weather conditions. Furthermore, many similar signs exist, only differing in minor details, and moreover, sign-like objects occur frequently. Consequently, current state-of-the-art systems are unable to reach the required quality level, implying the need for manual corrections. This involves checking all classification results to correct the small minority of misclassifications. This paper presents a classification approach aiming at both high recognition scores and predicting the reliability of the classification output, enabling selective manual intervention. Two reliability prediction methods are compared, analyzing either the classifier scores, or matching the input samples with predefined templates. Large-scale experiments performed for three sign classes, each containing numerous sign types, show that over 80% of the correctly classified results can be marked as reliable, while not marking any misclassifications as reliable. Hence, our research shows that a reliable prediction is possible and that manual invention can be concentrated to the about 25% remaining samples only. Overall, 92.7% of the 8, 159 signs are classified correctly. |
doi_str_mv | 10.1109/WACV.2013.6475009 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786186915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6475009</ieee_id><sourcerecordid>1786186915</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-bd299db724f85f057c543e7afed8b0d756db66003be1bf2f41b360c703f6cc1f3</originalsourceid><addsrcrecordid>eNpVkDlPAzEYRM0lEYX8AETjkmbD5_W1LqOIS4qEhDjKle21wdEewXZA---JSBqqKebNKwahSwJzQkDdvC-Wb_MSCJ0LJjmAOkIzJSvChKQcOFPHaFIKVhaKVuTkX0fLUzQhnEPBpYJzNEtpDQAEKBOKTdD6eTDblLFtdUrBB6tzGHqcxpRdh39C_sTRtUGb0IY84k10TbB_iB8iTq4Lhd7modvNLM5R-52iSOGjx6H_dn0e4niQpQt05nWb3OyQU_R6d_uyfChWT_ePy8WqCCVUuTBNqVRjZMl8xT1waTmjTmrvmspAI7lojBAA1DhifOkZMVSAlUC9sJZ4OkXXe-8mDl9bl3LdhWRd2-reDdtUE1kJUglF-A692qPBOVdvYuh0HOvDyfQXU5RujA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1786186915</pqid></control><display><type>conference_proceeding</type><title>Robust classification system with reliability prediction for semi-automatic traffic-sign inventory systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hazelhoff, L. ; Creusen, I. ; de With, P. H. N.</creator><creatorcontrib>Hazelhoff, L. ; Creusen, I. ; de With, P. H. N.</creatorcontrib><description>Inventories of traffic signs are acquired from street-level images in a semi-automated fashion, employing object detection and classification techniques. This is a challenging task, as signs are captured from different viewpoints and under various weather conditions. Furthermore, many similar signs exist, only differing in minor details, and moreover, sign-like objects occur frequently. Consequently, current state-of-the-art systems are unable to reach the required quality level, implying the need for manual corrections. This involves checking all classification results to correct the small minority of misclassifications. This paper presents a classification approach aiming at both high recognition scores and predicting the reliability of the classification output, enabling selective manual intervention. Two reliability prediction methods are compared, analyzing either the classifier scores, or matching the input samples with predefined templates. Large-scale experiments performed for three sign classes, each containing numerous sign types, show that over 80% of the correctly classified results can be marked as reliable, while not marking any misclassifications as reliable. Hence, our research shows that a reliable prediction is possible and that manual invention can be concentrated to the about 25% remaining samples only. Overall, 92.7% of the 8, 159 signs are classified correctly.</description><identifier>ISSN: 1550-5790</identifier><identifier>ISBN: 9781467350532</identifier><identifier>ISBN: 1467350532</identifier><identifier>EISSN: 2642-9381</identifier><identifier>EISSN: 1550-5790</identifier><identifier>EISBN: 9781467350549</identifier><identifier>EISBN: 1467350524</identifier><identifier>EISBN: 9781467350525</identifier><identifier>EISBN: 1467350540</identifier><identifier>DOI: 10.1109/WACV.2013.6475009</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Classification ; Computer vision ; Feature extraction ; Image detection ; Inventions ; Inventory management ; Manuals ; Reliability ; Road safety ; State of the art ; Training ; Workshops</subject><ispartof>2013 IEEE Workshop on Applications of Computer Vision (WACV), 2013, p.125-132</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6475009$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,2052,27901,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6475009$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hazelhoff, L.</creatorcontrib><creatorcontrib>Creusen, I.</creatorcontrib><creatorcontrib>de With, P. H. N.</creatorcontrib><title>Robust classification system with reliability prediction for semi-automatic traffic-sign inventory systems</title><title>2013 IEEE Workshop on Applications of Computer Vision (WACV)</title><addtitle>WACV</addtitle><description>Inventories of traffic signs are acquired from street-level images in a semi-automated fashion, employing object detection and classification techniques. This is a challenging task, as signs are captured from different viewpoints and under various weather conditions. Furthermore, many similar signs exist, only differing in minor details, and moreover, sign-like objects occur frequently. Consequently, current state-of-the-art systems are unable to reach the required quality level, implying the need for manual corrections. This involves checking all classification results to correct the small minority of misclassifications. This paper presents a classification approach aiming at both high recognition scores and predicting the reliability of the classification output, enabling selective manual intervention. Two reliability prediction methods are compared, analyzing either the classifier scores, or matching the input samples with predefined templates. Large-scale experiments performed for three sign classes, each containing numerous sign types, show that over 80% of the correctly classified results can be marked as reliable, while not marking any misclassifications as reliable. Hence, our research shows that a reliable prediction is possible and that manual invention can be concentrated to the about 25% remaining samples only. Overall, 92.7% of the 8, 159 signs are classified correctly.</description><subject>Accuracy</subject><subject>Classification</subject><subject>Computer vision</subject><subject>Feature extraction</subject><subject>Image detection</subject><subject>Inventions</subject><subject>Inventory management</subject><subject>Manuals</subject><subject>Reliability</subject><subject>Road safety</subject><subject>State of the art</subject><subject>Training</subject><subject>Workshops</subject><issn>1550-5790</issn><issn>2642-9381</issn><issn>1550-5790</issn><isbn>9781467350532</isbn><isbn>1467350532</isbn><isbn>9781467350549</isbn><isbn>1467350524</isbn><isbn>9781467350525</isbn><isbn>1467350540</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkDlPAzEYRM0lEYX8AETjkmbD5_W1LqOIS4qEhDjKle21wdEewXZA---JSBqqKebNKwahSwJzQkDdvC-Wb_MSCJ0LJjmAOkIzJSvChKQcOFPHaFIKVhaKVuTkX0fLUzQhnEPBpYJzNEtpDQAEKBOKTdD6eTDblLFtdUrBB6tzGHqcxpRdh39C_sTRtUGb0IY84k10TbB_iB8iTq4Lhd7modvNLM5R-52iSOGjx6H_dn0e4niQpQt05nWb3OyQU_R6d_uyfChWT_ePy8WqCCVUuTBNqVRjZMl8xT1waTmjTmrvmspAI7lojBAA1DhifOkZMVSAlUC9sJZ4OkXXe-8mDl9bl3LdhWRd2-reDdtUE1kJUglF-A692qPBOVdvYuh0HOvDyfQXU5RujA</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Hazelhoff, L.</creator><creator>Creusen, I.</creator><creator>de With, P. H. N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201301</creationdate><title>Robust classification system with reliability prediction for semi-automatic traffic-sign inventory systems</title><author>Hazelhoff, L. ; Creusen, I. ; de With, P. H. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-bd299db724f85f057c543e7afed8b0d756db66003be1bf2f41b360c703f6cc1f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Classification</topic><topic>Computer vision</topic><topic>Feature extraction</topic><topic>Image detection</topic><topic>Inventions</topic><topic>Inventory management</topic><topic>Manuals</topic><topic>Reliability</topic><topic>Road safety</topic><topic>State of the art</topic><topic>Training</topic><topic>Workshops</topic><toplevel>online_resources</toplevel><creatorcontrib>Hazelhoff, L.</creatorcontrib><creatorcontrib>Creusen, I.</creatorcontrib><creatorcontrib>de With, P. H. N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hazelhoff, L.</au><au>Creusen, I.</au><au>de With, P. H. N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust classification system with reliability prediction for semi-automatic traffic-sign inventory systems</atitle><btitle>2013 IEEE Workshop on Applications of Computer Vision (WACV)</btitle><stitle>WACV</stitle><date>2013-01</date><risdate>2013</risdate><spage>125</spage><epage>132</epage><pages>125-132</pages><issn>1550-5790</issn><eissn>2642-9381</eissn><eissn>1550-5790</eissn><isbn>9781467350532</isbn><isbn>1467350532</isbn><eisbn>9781467350549</eisbn><eisbn>1467350524</eisbn><eisbn>9781467350525</eisbn><eisbn>1467350540</eisbn><abstract>Inventories of traffic signs are acquired from street-level images in a semi-automated fashion, employing object detection and classification techniques. This is a challenging task, as signs are captured from different viewpoints and under various weather conditions. Furthermore, many similar signs exist, only differing in minor details, and moreover, sign-like objects occur frequently. Consequently, current state-of-the-art systems are unable to reach the required quality level, implying the need for manual corrections. This involves checking all classification results to correct the small minority of misclassifications. This paper presents a classification approach aiming at both high recognition scores and predicting the reliability of the classification output, enabling selective manual intervention. Two reliability prediction methods are compared, analyzing either the classifier scores, or matching the input samples with predefined templates. Large-scale experiments performed for three sign classes, each containing numerous sign types, show that over 80% of the correctly classified results can be marked as reliable, while not marking any misclassifications as reliable. Hence, our research shows that a reliable prediction is possible and that manual invention can be concentrated to the about 25% remaining samples only. Overall, 92.7% of the 8, 159 signs are classified correctly.</abstract><pub>IEEE</pub><doi>10.1109/WACV.2013.6475009</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-5790 |
ispartof | 2013 IEEE Workshop on Applications of Computer Vision (WACV), 2013, p.125-132 |
issn | 1550-5790 2642-9381 1550-5790 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786186915 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Classification Computer vision Feature extraction Image detection Inventions Inventory management Manuals Reliability Road safety State of the art Training Workshops |
title | Robust classification system with reliability prediction for semi-automatic traffic-sign inventory systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A34%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20classification%20system%20with%20reliability%20prediction%20for%20semi-automatic%20traffic-sign%20inventory%20systems&rft.btitle=2013%20IEEE%20Workshop%20on%20Applications%20of%20Computer%20Vision%20(WACV)&rft.au=Hazelhoff,%20L.&rft.date=2013-01&rft.spage=125&rft.epage=132&rft.pages=125-132&rft.issn=1550-5790&rft.eissn=2642-9381&rft.isbn=9781467350532&rft.isbn_list=1467350532&rft_id=info:doi/10.1109/WACV.2013.6475009&rft_dat=%3Cproquest_6IE%3E1786186915%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467350549&rft.eisbn_list=1467350524&rft.eisbn_list=9781467350525&rft.eisbn_list=1467350540&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786186915&rft_id=info:pmid/&rft_ieee_id=6475009&rfr_iscdi=true |