Electromechanical peridynamics modeling of piezoresistive response of carbon nanotube nanocomposites

[Display omitted] In this work, a coupled electromechanical peridynamics formulation is presented which is used to study the electrical and piezoresistive response of a carbon nanotube (CNT) reinforced polymer nanocomposite material. CNT nanocomposites are multiscale materials which have unique piez...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational materials science 2016-02, Vol.113, p.154-170
Hauptverfasser: Prakash, Naveen, Seidel, Gary D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 170
container_issue
container_start_page 154
container_title Computational materials science
container_volume 113
creator Prakash, Naveen
Seidel, Gary D.
description [Display omitted] In this work, a coupled electromechanical peridynamics formulation is presented which is used to study the electrical and piezoresistive response of a carbon nanotube (CNT) reinforced polymer nanocomposite material. CNT nanocomposites are multiscale materials which have unique piezoresistive properties arising from mechanisms operating from the nanoscale to the macroscale. The origin of piezoresistivity in CNT nanocomposites is a nanoscale phenomenon known as electron hopping or the electrical tunneling effect which allows an electric current to flow between neighboring CNTs even when not in contact, thereby forming a conductive network. A nanoscale representative volume element of a CNT bundle is chosen, i.e. a local region of high CNT volume fraction within the polymer matrix, wherein coupled electromechanical peridynamic equations are solved to evaluate the effective electrical and piezoresistive properties. The peridynamics formulation is used to introduce electron hopping in a unique way, through electron hopping bonds which have a horizon distance and conductivity dictated by the appropriate physics operating at the nanoscale. The effective electromechanical response depends on parameters such as CNT volume fraction, properties of the polymer matrix between CNTs and applied strain which are investigated in detail. Both quasistatic and dynamic loading conditions are considered where the effective electromechanical response is found to depend on variations in the local conductivity of intertube regions.
doi_str_mv 10.1016/j.commatsci.2015.11.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786184236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025615007156</els_id><sourcerecordid>1786184236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-7541f8e1d7a9abebea9b69ef563d7c482cf059fb57fb035b64617f0a2121a7ea3</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwG8iRS4I3Dzs5Vqg8pEpc4GzZzhpcJXawU6Ty63Ep4sppR9qZ0e5HyDXQAiiw222h_TjKOWpblBSaAqCgtD0hC2h5l9OWwilZ0K7kOS0bdk4uYtzSlOzackH69YB6Dn5E_S6d1XLIJgy23zs5Wh2z0fc4WPeWeZNNFr98wGjjbD8xS2ryLuJhpWVQ3mVOOj_vFP6IdNbko50xXpIzI4eIV79zSV7v1y93j_nm-eHpbrXJdc2qOedNDaZF6LnspEKFslOsQ9Owque6bkttaNMZ1XCjaNUoVjPghsoSSpAcZbUkN8feKfiPHcZZjDZqHAbp0O-iAN4yaOuyYsnKj1YdfIwBjZiCHWXYC6DiwFVsxR9XceAqAETimpKrYxLTJ58Wg0gOdBp7GxJK0Xv7b8c3fE-JXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786184236</pqid></control><display><type>article</type><title>Electromechanical peridynamics modeling of piezoresistive response of carbon nanotube nanocomposites</title><source>Access via ScienceDirect (Elsevier)</source><creator>Prakash, Naveen ; Seidel, Gary D.</creator><creatorcontrib>Prakash, Naveen ; Seidel, Gary D.</creatorcontrib><description>[Display omitted] In this work, a coupled electromechanical peridynamics formulation is presented which is used to study the electrical and piezoresistive response of a carbon nanotube (CNT) reinforced polymer nanocomposite material. CNT nanocomposites are multiscale materials which have unique piezoresistive properties arising from mechanisms operating from the nanoscale to the macroscale. The origin of piezoresistivity in CNT nanocomposites is a nanoscale phenomenon known as electron hopping or the electrical tunneling effect which allows an electric current to flow between neighboring CNTs even when not in contact, thereby forming a conductive network. A nanoscale representative volume element of a CNT bundle is chosen, i.e. a local region of high CNT volume fraction within the polymer matrix, wherein coupled electromechanical peridynamic equations are solved to evaluate the effective electrical and piezoresistive properties. The peridynamics formulation is used to introduce electron hopping in a unique way, through electron hopping bonds which have a horizon distance and conductivity dictated by the appropriate physics operating at the nanoscale. The effective electromechanical response depends on parameters such as CNT volume fraction, properties of the polymer matrix between CNTs and applied strain which are investigated in detail. Both quasistatic and dynamic loading conditions are considered where the effective electromechanical response is found to depend on variations in the local conductivity of intertube regions.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2015.11.008</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Carbon nanotubes ; Electron hopping ; Hopping (conductivity) ; Joining ; Loads (forces) ; Mathematical models ; Nanocomposites ; Nanostructure ; Non-local methods ; Peridynamics ; Piezoresistivity ; Polymer nanocomposites ; Volume fraction</subject><ispartof>Computational materials science, 2016-02, Vol.113, p.154-170</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-7541f8e1d7a9abebea9b69ef563d7c482cf059fb57fb035b64617f0a2121a7ea3</citedby><cites>FETCH-LOGICAL-c463t-7541f8e1d7a9abebea9b69ef563d7c482cf059fb57fb035b64617f0a2121a7ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.commatsci.2015.11.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Prakash, Naveen</creatorcontrib><creatorcontrib>Seidel, Gary D.</creatorcontrib><title>Electromechanical peridynamics modeling of piezoresistive response of carbon nanotube nanocomposites</title><title>Computational materials science</title><description>[Display omitted] In this work, a coupled electromechanical peridynamics formulation is presented which is used to study the electrical and piezoresistive response of a carbon nanotube (CNT) reinforced polymer nanocomposite material. CNT nanocomposites are multiscale materials which have unique piezoresistive properties arising from mechanisms operating from the nanoscale to the macroscale. The origin of piezoresistivity in CNT nanocomposites is a nanoscale phenomenon known as electron hopping or the electrical tunneling effect which allows an electric current to flow between neighboring CNTs even when not in contact, thereby forming a conductive network. A nanoscale representative volume element of a CNT bundle is chosen, i.e. a local region of high CNT volume fraction within the polymer matrix, wherein coupled electromechanical peridynamic equations are solved to evaluate the effective electrical and piezoresistive properties. The peridynamics formulation is used to introduce electron hopping in a unique way, through electron hopping bonds which have a horizon distance and conductivity dictated by the appropriate physics operating at the nanoscale. The effective electromechanical response depends on parameters such as CNT volume fraction, properties of the polymer matrix between CNTs and applied strain which are investigated in detail. Both quasistatic and dynamic loading conditions are considered where the effective electromechanical response is found to depend on variations in the local conductivity of intertube regions.</description><subject>Carbon nanotubes</subject><subject>Electron hopping</subject><subject>Hopping (conductivity)</subject><subject>Joining</subject><subject>Loads (forces)</subject><subject>Mathematical models</subject><subject>Nanocomposites</subject><subject>Nanostructure</subject><subject>Non-local methods</subject><subject>Peridynamics</subject><subject>Piezoresistivity</subject><subject>Polymer nanocomposites</subject><subject>Volume fraction</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwG8iRS4I3Dzs5Vqg8pEpc4GzZzhpcJXawU6Ty63Ep4sppR9qZ0e5HyDXQAiiw222h_TjKOWpblBSaAqCgtD0hC2h5l9OWwilZ0K7kOS0bdk4uYtzSlOzackH69YB6Dn5E_S6d1XLIJgy23zs5Wh2z0fc4WPeWeZNNFr98wGjjbD8xS2ryLuJhpWVQ3mVOOj_vFP6IdNbko50xXpIzI4eIV79zSV7v1y93j_nm-eHpbrXJdc2qOedNDaZF6LnspEKFslOsQ9Owque6bkttaNMZ1XCjaNUoVjPghsoSSpAcZbUkN8feKfiPHcZZjDZqHAbp0O-iAN4yaOuyYsnKj1YdfIwBjZiCHWXYC6DiwFVsxR9XceAqAETimpKrYxLTJ58Wg0gOdBp7GxJK0Xv7b8c3fE-JXA</recordid><startdate>20160215</startdate><enddate>20160215</enddate><creator>Prakash, Naveen</creator><creator>Seidel, Gary D.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160215</creationdate><title>Electromechanical peridynamics modeling of piezoresistive response of carbon nanotube nanocomposites</title><author>Prakash, Naveen ; Seidel, Gary D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-7541f8e1d7a9abebea9b69ef563d7c482cf059fb57fb035b64617f0a2121a7ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Carbon nanotubes</topic><topic>Electron hopping</topic><topic>Hopping (conductivity)</topic><topic>Joining</topic><topic>Loads (forces)</topic><topic>Mathematical models</topic><topic>Nanocomposites</topic><topic>Nanostructure</topic><topic>Non-local methods</topic><topic>Peridynamics</topic><topic>Piezoresistivity</topic><topic>Polymer nanocomposites</topic><topic>Volume fraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prakash, Naveen</creatorcontrib><creatorcontrib>Seidel, Gary D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prakash, Naveen</au><au>Seidel, Gary D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromechanical peridynamics modeling of piezoresistive response of carbon nanotube nanocomposites</atitle><jtitle>Computational materials science</jtitle><date>2016-02-15</date><risdate>2016</risdate><volume>113</volume><spage>154</spage><epage>170</epage><pages>154-170</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>[Display omitted] In this work, a coupled electromechanical peridynamics formulation is presented which is used to study the electrical and piezoresistive response of a carbon nanotube (CNT) reinforced polymer nanocomposite material. CNT nanocomposites are multiscale materials which have unique piezoresistive properties arising from mechanisms operating from the nanoscale to the macroscale. The origin of piezoresistivity in CNT nanocomposites is a nanoscale phenomenon known as electron hopping or the electrical tunneling effect which allows an electric current to flow between neighboring CNTs even when not in contact, thereby forming a conductive network. A nanoscale representative volume element of a CNT bundle is chosen, i.e. a local region of high CNT volume fraction within the polymer matrix, wherein coupled electromechanical peridynamic equations are solved to evaluate the effective electrical and piezoresistive properties. The peridynamics formulation is used to introduce electron hopping in a unique way, through electron hopping bonds which have a horizon distance and conductivity dictated by the appropriate physics operating at the nanoscale. The effective electromechanical response depends on parameters such as CNT volume fraction, properties of the polymer matrix between CNTs and applied strain which are investigated in detail. Both quasistatic and dynamic loading conditions are considered where the effective electromechanical response is found to depend on variations in the local conductivity of intertube regions.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2015.11.008</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0927-0256
ispartof Computational materials science, 2016-02, Vol.113, p.154-170
issn 0927-0256
1879-0801
language eng
recordid cdi_proquest_miscellaneous_1786184236
source Access via ScienceDirect (Elsevier)
subjects Carbon nanotubes
Electron hopping
Hopping (conductivity)
Joining
Loads (forces)
Mathematical models
Nanocomposites
Nanostructure
Non-local methods
Peridynamics
Piezoresistivity
Polymer nanocomposites
Volume fraction
title Electromechanical peridynamics modeling of piezoresistive response of carbon nanotube nanocomposites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A25%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromechanical%20peridynamics%20modeling%20of%20piezoresistive%20response%20of%20carbon%20nanotube%20nanocomposites&rft.jtitle=Computational%20materials%20science&rft.au=Prakash,%20Naveen&rft.date=2016-02-15&rft.volume=113&rft.spage=154&rft.epage=170&rft.pages=154-170&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2015.11.008&rft_dat=%3Cproquest_cross%3E1786184236%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786184236&rft_id=info:pmid/&rft_els_id=S0927025615007156&rfr_iscdi=true