Phospholipid based colloidal poloxamer–nanocubic vesicles for brain targeting via the nasal route

[Display omitted] ► New phospholipid based nanocubic vesicular systems were developed. ► The polymeric non-ionic surfactant, poloxamer was incorporated in its lipid bilayer. ► The effect of surfactant concentration on the physicochemical properties of the nanocubic vesicles was investigated. ► The b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2012-12, Vol.100, p.146-154
Hauptverfasser: Salama, Hamed A., Mahmoud, Azza A., Kamel, Amany O., Abdel Hady, Mayssa, Awad, Gehanne A.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154
container_issue
container_start_page 146
container_title Colloids and surfaces, B, Biointerfaces
container_volume 100
creator Salama, Hamed A.
Mahmoud, Azza A.
Kamel, Amany O.
Abdel Hady, Mayssa
Awad, Gehanne A.S.
description [Display omitted] ► New phospholipid based nanocubic vesicular systems were developed. ► The polymeric non-ionic surfactant, poloxamer was incorporated in its lipid bilayer. ► The effect of surfactant concentration on the physicochemical properties of the nanocubic vesicles was investigated. ► The brain targeting efficiency of these vesicles were evaluated after intranasal administration to rats. In this study, new phospholipid based colloidal nanocubic vesicles encapsulating olanzapine for its brain targeting via the nasal route were developed. The nanocubic vesicles were prepared by incorporating non-ionic copolymers, poloxamer 188 or 407, in the lipid bilayer. The effect of phospholipid:poloxamer molar ratio on the physicochemical properties of the nanocubic vesicles was investigated. The in vivo behavior and brain targeting of these vesicles were evaluated in rats. TEM photographs showed that the vesicles looked spherical before adding poloxamer. However, after poloxamer incorporation, the vesicles showed a predominant cubic shape, except those containing phospholipid:poloxamer in the molar ratio 5:1 which were spherical. DSC study confirmed perturbation of the packing characteristics as well as fluidization of the lipid bilayer by the polymer with consequent formation of the nanocubic structure. The mean diameter of the vesicles was in the range of 363–645nm. All vesicles were elastic and the elasticity was found to depend on both poloxamer type and concentration. The intranasal nanocubic vesicles were significantly more efficient in targeting olanzapine to the brain compared to the liposomal vesicles with drug targeting efficiency values of 100% and 80%, respectively, and absolute bioavailability of 37.9% and 14.9%, respectively.
doi_str_mv 10.1016/j.colsurfb.2012.05.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786183780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927776512002810</els_id><sourcerecordid>1765947071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-1f15de2c2c1bd0bfe998451745d5c89bb30f0f9f92231a7aad31fc2f994f9ac93</originalsourceid><addsrcrecordid>eNqNkc1O3DAUha2qqAzQV0BesknqnySOdyDUQiWkdgFryz_XjEeeOLWTEez6Dn3DPkkzGmBLV3fznXOk-yF0TklNCe2-bGqbYpmzNzUjlNWkrQklH9CK9oJXDe_ER7QikolKiK49RielbAghrKHiEzpmTHQdk3SF7M91KuM6xTAGh40u4PDSHFNwOuIxxfSkt5D__v4z6CHZ2QSLd1CCjVCwTxmbrMOAJ50fYQrDI94Fjac14EGXpSCneYIzdOR1LPD55Z6ih29f769vq7sfN9-vr-4q2_BmqqinrQNmmaXGEeNByr5pqWha19peGsOJJ156yRinWmjtOPWWeSkbL7WV_BRdHHrHnH7NUCa1DcVCjHqANBdFRd_Rnoue_AfatbIRRND3UcJEz5nke7Q7oDanUjJ4Neaw1fl5gdRem9qoV21qr02RVi3aluD5y8ZstuDeYq-eFuDyAMDyv12ArIoNMFhwIYOdlEvhvY1_jlKuuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027832931</pqid></control><display><type>article</type><title>Phospholipid based colloidal poloxamer–nanocubic vesicles for brain targeting via the nasal route</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Salama, Hamed A. ; Mahmoud, Azza A. ; Kamel, Amany O. ; Abdel Hady, Mayssa ; Awad, Gehanne A.S.</creator><creatorcontrib>Salama, Hamed A. ; Mahmoud, Azza A. ; Kamel, Amany O. ; Abdel Hady, Mayssa ; Awad, Gehanne A.S.</creatorcontrib><description>[Display omitted] ► New phospholipid based nanocubic vesicular systems were developed. ► The polymeric non-ionic surfactant, poloxamer was incorporated in its lipid bilayer. ► The effect of surfactant concentration on the physicochemical properties of the nanocubic vesicles was investigated. ► The brain targeting efficiency of these vesicles were evaluated after intranasal administration to rats. In this study, new phospholipid based colloidal nanocubic vesicles encapsulating olanzapine for its brain targeting via the nasal route were developed. The nanocubic vesicles were prepared by incorporating non-ionic copolymers, poloxamer 188 or 407, in the lipid bilayer. The effect of phospholipid:poloxamer molar ratio on the physicochemical properties of the nanocubic vesicles was investigated. The in vivo behavior and brain targeting of these vesicles were evaluated in rats. TEM photographs showed that the vesicles looked spherical before adding poloxamer. However, after poloxamer incorporation, the vesicles showed a predominant cubic shape, except those containing phospholipid:poloxamer in the molar ratio 5:1 which were spherical. DSC study confirmed perturbation of the packing characteristics as well as fluidization of the lipid bilayer by the polymer with consequent formation of the nanocubic structure. The mean diameter of the vesicles was in the range of 363–645nm. All vesicles were elastic and the elasticity was found to depend on both poloxamer type and concentration. The intranasal nanocubic vesicles were significantly more efficient in targeting olanzapine to the brain compared to the liposomal vesicles with drug targeting efficiency values of 100% and 80%, respectively, and absolute bioavailability of 37.9% and 14.9%, respectively.</description><identifier>ISSN: 0927-7765</identifier><identifier>EISSN: 1873-4367</identifier><identifier>DOI: 10.1016/j.colsurfb.2012.05.010</identifier><identifier>PMID: 22766291</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Administration, Intranasal ; Administration, Intravenous ; Animals ; Antipsychotic Agents - administration &amp; dosage ; Antipsychotic Agents - chemistry ; Antipsychotic Agents - pharmacokinetics ; Benzodiazepines - administration &amp; dosage ; Benzodiazepines - chemistry ; Benzodiazepines - pharmacokinetics ; Bioavailability ; Biological Availability ; Brain ; Brain Chemistry ; Brain targeting ; Chromatography, Liquid ; Colloids ; Drug Carriers - administration &amp; dosage ; Drug Carriers - chemical synthesis ; Drug Carriers - pharmacokinetics ; Drug Delivery Systems ; Elasticity ; Intranasal ; Lipid Bilayers - chemistry ; Lipids ; Liposomes - chemistry ; Male ; Mass Spectrometry ; Nanocubic ; Nanostructure ; Olanzapine ; Particle Size ; Phospholipids ; Phospholipids - chemistry ; Poloxamer ; Poloxamer - chemistry ; Rats ; Rats, Wistar ; Vesicles</subject><ispartof>Colloids and surfaces, B, Biointerfaces, 2012-12, Vol.100, p.146-154</ispartof><rights>2012 Elsevier B.V.</rights><rights>Copyright © 2012 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-1f15de2c2c1bd0bfe998451745d5c89bb30f0f9f92231a7aad31fc2f994f9ac93</citedby><cites>FETCH-LOGICAL-c434t-1f15de2c2c1bd0bfe998451745d5c89bb30f0f9f92231a7aad31fc2f994f9ac93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.colsurfb.2012.05.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22766291$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salama, Hamed A.</creatorcontrib><creatorcontrib>Mahmoud, Azza A.</creatorcontrib><creatorcontrib>Kamel, Amany O.</creatorcontrib><creatorcontrib>Abdel Hady, Mayssa</creatorcontrib><creatorcontrib>Awad, Gehanne A.S.</creatorcontrib><title>Phospholipid based colloidal poloxamer–nanocubic vesicles for brain targeting via the nasal route</title><title>Colloids and surfaces, B, Biointerfaces</title><addtitle>Colloids Surf B Biointerfaces</addtitle><description>[Display omitted] ► New phospholipid based nanocubic vesicular systems were developed. ► The polymeric non-ionic surfactant, poloxamer was incorporated in its lipid bilayer. ► The effect of surfactant concentration on the physicochemical properties of the nanocubic vesicles was investigated. ► The brain targeting efficiency of these vesicles were evaluated after intranasal administration to rats. In this study, new phospholipid based colloidal nanocubic vesicles encapsulating olanzapine for its brain targeting via the nasal route were developed. The nanocubic vesicles were prepared by incorporating non-ionic copolymers, poloxamer 188 or 407, in the lipid bilayer. The effect of phospholipid:poloxamer molar ratio on the physicochemical properties of the nanocubic vesicles was investigated. The in vivo behavior and brain targeting of these vesicles were evaluated in rats. TEM photographs showed that the vesicles looked spherical before adding poloxamer. However, after poloxamer incorporation, the vesicles showed a predominant cubic shape, except those containing phospholipid:poloxamer in the molar ratio 5:1 which were spherical. DSC study confirmed perturbation of the packing characteristics as well as fluidization of the lipid bilayer by the polymer with consequent formation of the nanocubic structure. The mean diameter of the vesicles was in the range of 363–645nm. All vesicles were elastic and the elasticity was found to depend on both poloxamer type and concentration. The intranasal nanocubic vesicles were significantly more efficient in targeting olanzapine to the brain compared to the liposomal vesicles with drug targeting efficiency values of 100% and 80%, respectively, and absolute bioavailability of 37.9% and 14.9%, respectively.</description><subject>Administration, Intranasal</subject><subject>Administration, Intravenous</subject><subject>Animals</subject><subject>Antipsychotic Agents - administration &amp; dosage</subject><subject>Antipsychotic Agents - chemistry</subject><subject>Antipsychotic Agents - pharmacokinetics</subject><subject>Benzodiazepines - administration &amp; dosage</subject><subject>Benzodiazepines - chemistry</subject><subject>Benzodiazepines - pharmacokinetics</subject><subject>Bioavailability</subject><subject>Biological Availability</subject><subject>Brain</subject><subject>Brain Chemistry</subject><subject>Brain targeting</subject><subject>Chromatography, Liquid</subject><subject>Colloids</subject><subject>Drug Carriers - administration &amp; dosage</subject><subject>Drug Carriers - chemical synthesis</subject><subject>Drug Carriers - pharmacokinetics</subject><subject>Drug Delivery Systems</subject><subject>Elasticity</subject><subject>Intranasal</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Liposomes - chemistry</subject><subject>Male</subject><subject>Mass Spectrometry</subject><subject>Nanocubic</subject><subject>Nanostructure</subject><subject>Olanzapine</subject><subject>Particle Size</subject><subject>Phospholipids</subject><subject>Phospholipids - chemistry</subject><subject>Poloxamer</subject><subject>Poloxamer - chemistry</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Vesicles</subject><issn>0927-7765</issn><issn>1873-4367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1O3DAUha2qqAzQV0BesknqnySOdyDUQiWkdgFryz_XjEeeOLWTEez6Dn3DPkkzGmBLV3fznXOk-yF0TklNCe2-bGqbYpmzNzUjlNWkrQklH9CK9oJXDe_ER7QikolKiK49RielbAghrKHiEzpmTHQdk3SF7M91KuM6xTAGh40u4PDSHFNwOuIxxfSkt5D__v4z6CHZ2QSLd1CCjVCwTxmbrMOAJ50fYQrDI94Fjac14EGXpSCneYIzdOR1LPD55Z6ih29f769vq7sfN9-vr-4q2_BmqqinrQNmmaXGEeNByr5pqWha19peGsOJJ156yRinWmjtOPWWeSkbL7WV_BRdHHrHnH7NUCa1DcVCjHqANBdFRd_Rnoue_AfatbIRRND3UcJEz5nke7Q7oDanUjJ4Neaw1fl5gdRem9qoV21qr02RVi3aluD5y8ZstuDeYq-eFuDyAMDyv12ArIoNMFhwIYOdlEvhvY1_jlKuuA</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Salama, Hamed A.</creator><creator>Mahmoud, Azza A.</creator><creator>Kamel, Amany O.</creator><creator>Abdel Hady, Mayssa</creator><creator>Awad, Gehanne A.S.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20121201</creationdate><title>Phospholipid based colloidal poloxamer–nanocubic vesicles for brain targeting via the nasal route</title><author>Salama, Hamed A. ; Mahmoud, Azza A. ; Kamel, Amany O. ; Abdel Hady, Mayssa ; Awad, Gehanne A.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-1f15de2c2c1bd0bfe998451745d5c89bb30f0f9f92231a7aad31fc2f994f9ac93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Administration, Intranasal</topic><topic>Administration, Intravenous</topic><topic>Animals</topic><topic>Antipsychotic Agents - administration &amp; dosage</topic><topic>Antipsychotic Agents - chemistry</topic><topic>Antipsychotic Agents - pharmacokinetics</topic><topic>Benzodiazepines - administration &amp; dosage</topic><topic>Benzodiazepines - chemistry</topic><topic>Benzodiazepines - pharmacokinetics</topic><topic>Bioavailability</topic><topic>Biological Availability</topic><topic>Brain</topic><topic>Brain Chemistry</topic><topic>Brain targeting</topic><topic>Chromatography, Liquid</topic><topic>Colloids</topic><topic>Drug Carriers - administration &amp; dosage</topic><topic>Drug Carriers - chemical synthesis</topic><topic>Drug Carriers - pharmacokinetics</topic><topic>Drug Delivery Systems</topic><topic>Elasticity</topic><topic>Intranasal</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Liposomes - chemistry</topic><topic>Male</topic><topic>Mass Spectrometry</topic><topic>Nanocubic</topic><topic>Nanostructure</topic><topic>Olanzapine</topic><topic>Particle Size</topic><topic>Phospholipids</topic><topic>Phospholipids - chemistry</topic><topic>Poloxamer</topic><topic>Poloxamer - chemistry</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salama, Hamed A.</creatorcontrib><creatorcontrib>Mahmoud, Azza A.</creatorcontrib><creatorcontrib>Kamel, Amany O.</creatorcontrib><creatorcontrib>Abdel Hady, Mayssa</creatorcontrib><creatorcontrib>Awad, Gehanne A.S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salama, Hamed A.</au><au>Mahmoud, Azza A.</au><au>Kamel, Amany O.</au><au>Abdel Hady, Mayssa</au><au>Awad, Gehanne A.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phospholipid based colloidal poloxamer–nanocubic vesicles for brain targeting via the nasal route</atitle><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle><addtitle>Colloids Surf B Biointerfaces</addtitle><date>2012-12-01</date><risdate>2012</risdate><volume>100</volume><spage>146</spage><epage>154</epage><pages>146-154</pages><issn>0927-7765</issn><eissn>1873-4367</eissn><abstract>[Display omitted] ► New phospholipid based nanocubic vesicular systems were developed. ► The polymeric non-ionic surfactant, poloxamer was incorporated in its lipid bilayer. ► The effect of surfactant concentration on the physicochemical properties of the nanocubic vesicles was investigated. ► The brain targeting efficiency of these vesicles were evaluated after intranasal administration to rats. In this study, new phospholipid based colloidal nanocubic vesicles encapsulating olanzapine for its brain targeting via the nasal route were developed. The nanocubic vesicles were prepared by incorporating non-ionic copolymers, poloxamer 188 or 407, in the lipid bilayer. The effect of phospholipid:poloxamer molar ratio on the physicochemical properties of the nanocubic vesicles was investigated. The in vivo behavior and brain targeting of these vesicles were evaluated in rats. TEM photographs showed that the vesicles looked spherical before adding poloxamer. However, after poloxamer incorporation, the vesicles showed a predominant cubic shape, except those containing phospholipid:poloxamer in the molar ratio 5:1 which were spherical. DSC study confirmed perturbation of the packing characteristics as well as fluidization of the lipid bilayer by the polymer with consequent formation of the nanocubic structure. The mean diameter of the vesicles was in the range of 363–645nm. All vesicles were elastic and the elasticity was found to depend on both poloxamer type and concentration. The intranasal nanocubic vesicles were significantly more efficient in targeting olanzapine to the brain compared to the liposomal vesicles with drug targeting efficiency values of 100% and 80%, respectively, and absolute bioavailability of 37.9% and 14.9%, respectively.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>22766291</pmid><doi>10.1016/j.colsurfb.2012.05.010</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-7765
ispartof Colloids and surfaces, B, Biointerfaces, 2012-12, Vol.100, p.146-154
issn 0927-7765
1873-4367
language eng
recordid cdi_proquest_miscellaneous_1786183780
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Administration, Intranasal
Administration, Intravenous
Animals
Antipsychotic Agents - administration & dosage
Antipsychotic Agents - chemistry
Antipsychotic Agents - pharmacokinetics
Benzodiazepines - administration & dosage
Benzodiazepines - chemistry
Benzodiazepines - pharmacokinetics
Bioavailability
Biological Availability
Brain
Brain Chemistry
Brain targeting
Chromatography, Liquid
Colloids
Drug Carriers - administration & dosage
Drug Carriers - chemical synthesis
Drug Carriers - pharmacokinetics
Drug Delivery Systems
Elasticity
Intranasal
Lipid Bilayers - chemistry
Lipids
Liposomes - chemistry
Male
Mass Spectrometry
Nanocubic
Nanostructure
Olanzapine
Particle Size
Phospholipids
Phospholipids - chemistry
Poloxamer
Poloxamer - chemistry
Rats
Rats, Wistar
Vesicles
title Phospholipid based colloidal poloxamer–nanocubic vesicles for brain targeting via the nasal route
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A16%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phospholipid%20based%20colloidal%20poloxamer%E2%80%93nanocubic%20vesicles%20for%20brain%20targeting%20via%20the%20nasal%20route&rft.jtitle=Colloids%20and%20surfaces,%20B,%20Biointerfaces&rft.au=Salama,%20Hamed%20A.&rft.date=2012-12-01&rft.volume=100&rft.spage=146&rft.epage=154&rft.pages=146-154&rft.issn=0927-7765&rft.eissn=1873-4367&rft_id=info:doi/10.1016/j.colsurfb.2012.05.010&rft_dat=%3Cproquest_cross%3E1765947071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027832931&rft_id=info:pmid/22766291&rft_els_id=S0927776512002810&rfr_iscdi=true