Machine Learning for Discriminating Quantum Measurement Trajectories and Improving Readout

Current methods for classifying measurement trajectories in superconducting qubit systems produce fidelities systematically lower than those predicted by experimental parameters. Here, we place current classification methods within the framework of machine learning (ML) algorithms and improve on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2015-05, Vol.114 (20), p.200501-200501, Article 200501
Hauptverfasser: Magesan, Easwar, Gambetta, Jay M, Córcoles, A D, Chow, Jerry M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 200501
container_issue 20
container_start_page 200501
container_title Physical review letters
container_volume 114
creator Magesan, Easwar
Gambetta, Jay M
Córcoles, A D
Chow, Jerry M
description Current methods for classifying measurement trajectories in superconducting qubit systems produce fidelities systematically lower than those predicted by experimental parameters. Here, we place current classification methods within the framework of machine learning (ML) algorithms and improve on them by investigating more sophisticated ML approaches. We find that nonlinear algorithms and clustering methods produce significantly higher assignment fidelities that help close the gap to the fidelity possible under ideal noise conditions. Clustering methods group trajectories into natural subsets within the data, which allows for the diagnosis of systematic errors. We find large clusters in the data associated with T1 processes and show these are the main source of discrepancy between our experimental and ideal fidelities. These error diagnosis techniques help provide a path forward to improve qubit measurements.
doi_str_mv 10.1103/physrevlett.114.200501
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786179979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786179979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-8fe664128cb3c6073127008a9606c0d241ace69f4013400841650c7152c883f23</originalsourceid><addsrcrecordid>eNqFUctOwzAQtBCIlscvVDlySdm1Ezs5ovKq1IqH4MIlct0NTZVHsZ1K_D2uWrhyWml2Znc0w9gIYYwI4nqz-naWtjV5H4BkzAFSwCM2RFB5rAJ0zIYAAuMcQA3YmXNrAEAus1M24BISxTEdso-5NquqpWhG2rZV-xmVnY1uK2ds1VSt9jvopdet75toTtr1lhpqffRm9ZqM72xFLtLtMpo2G9ttd_RX0suu9xfspNS1o8vDPGfv93dvk8d49vQwndzMYpMi-jgrScoEeWYWwkhQArkCyHQuQRpY8gS1IZmXCaBIwiJBmYJRmHKTZaLk4pxd7e-G_189OV80wT7VtW6p612BKpOo8lzl_1NlFqygEipQ5Z5qbOdC1GWxCYlo-10gFLsKiudQwSttZ6GCACTFvoIgHB1-9IuGln-y38zFD5aPhF8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1686411737</pqid></control><display><type>article</type><title>Machine Learning for Discriminating Quantum Measurement Trajectories and Improving Readout</title><source>American Physical Society Journals</source><creator>Magesan, Easwar ; Gambetta, Jay M ; Córcoles, A D ; Chow, Jerry M</creator><creatorcontrib>Magesan, Easwar ; Gambetta, Jay M ; Córcoles, A D ; Chow, Jerry M</creatorcontrib><description>Current methods for classifying measurement trajectories in superconducting qubit systems produce fidelities systematically lower than those predicted by experimental parameters. Here, we place current classification methods within the framework of machine learning (ML) algorithms and improve on them by investigating more sophisticated ML approaches. We find that nonlinear algorithms and clustering methods produce significantly higher assignment fidelities that help close the gap to the fidelity possible under ideal noise conditions. Clustering methods group trajectories into natural subsets within the data, which allows for the diagnosis of systematic errors. We find large clusters in the data associated with T1 processes and show these are the main source of discrepancy between our experimental and ideal fidelities. These error diagnosis techniques help provide a path forward to improve qubit measurements.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.114.200501</identifier><identifier>PMID: 26047215</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Classification ; Clustering ; Diagnosis ; Machine learning ; Production methods ; Qubits (quantum computing) ; Trajectories</subject><ispartof>Physical review letters, 2015-05, Vol.114 (20), p.200501-200501, Article 200501</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-8fe664128cb3c6073127008a9606c0d241ace69f4013400841650c7152c883f23</citedby><cites>FETCH-LOGICAL-c511t-8fe664128cb3c6073127008a9606c0d241ace69f4013400841650c7152c883f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26047215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Magesan, Easwar</creatorcontrib><creatorcontrib>Gambetta, Jay M</creatorcontrib><creatorcontrib>Córcoles, A D</creatorcontrib><creatorcontrib>Chow, Jerry M</creatorcontrib><title>Machine Learning for Discriminating Quantum Measurement Trajectories and Improving Readout</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Current methods for classifying measurement trajectories in superconducting qubit systems produce fidelities systematically lower than those predicted by experimental parameters. Here, we place current classification methods within the framework of machine learning (ML) algorithms and improve on them by investigating more sophisticated ML approaches. We find that nonlinear algorithms and clustering methods produce significantly higher assignment fidelities that help close the gap to the fidelity possible under ideal noise conditions. Clustering methods group trajectories into natural subsets within the data, which allows for the diagnosis of systematic errors. We find large clusters in the data associated with T1 processes and show these are the main source of discrepancy between our experimental and ideal fidelities. These error diagnosis techniques help provide a path forward to improve qubit measurements.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Clustering</subject><subject>Diagnosis</subject><subject>Machine learning</subject><subject>Production methods</subject><subject>Qubits (quantum computing)</subject><subject>Trajectories</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFUctOwzAQtBCIlscvVDlySdm1Ezs5ovKq1IqH4MIlct0NTZVHsZ1K_D2uWrhyWml2Znc0w9gIYYwI4nqz-naWtjV5H4BkzAFSwCM2RFB5rAJ0zIYAAuMcQA3YmXNrAEAus1M24BISxTEdso-5NquqpWhG2rZV-xmVnY1uK2ds1VSt9jvopdet75toTtr1lhpqffRm9ZqM72xFLtLtMpo2G9ttd_RX0suu9xfspNS1o8vDPGfv93dvk8d49vQwndzMYpMi-jgrScoEeWYWwkhQArkCyHQuQRpY8gS1IZmXCaBIwiJBmYJRmHKTZaLk4pxd7e-G_189OV80wT7VtW6p612BKpOo8lzl_1NlFqygEipQ5Z5qbOdC1GWxCYlo-10gFLsKiudQwSttZ6GCACTFvoIgHB1-9IuGln-y38zFD5aPhF8</recordid><startdate>20150522</startdate><enddate>20150522</enddate><creator>Magesan, Easwar</creator><creator>Gambetta, Jay M</creator><creator>Córcoles, A D</creator><creator>Chow, Jerry M</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150522</creationdate><title>Machine Learning for Discriminating Quantum Measurement Trajectories and Improving Readout</title><author>Magesan, Easwar ; Gambetta, Jay M ; Córcoles, A D ; Chow, Jerry M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-8fe664128cb3c6073127008a9606c0d241ace69f4013400841650c7152c883f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Clustering</topic><topic>Diagnosis</topic><topic>Machine learning</topic><topic>Production methods</topic><topic>Qubits (quantum computing)</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Magesan, Easwar</creatorcontrib><creatorcontrib>Gambetta, Jay M</creatorcontrib><creatorcontrib>Córcoles, A D</creatorcontrib><creatorcontrib>Chow, Jerry M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Magesan, Easwar</au><au>Gambetta, Jay M</au><au>Córcoles, A D</au><au>Chow, Jerry M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning for Discriminating Quantum Measurement Trajectories and Improving Readout</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2015-05-22</date><risdate>2015</risdate><volume>114</volume><issue>20</issue><spage>200501</spage><epage>200501</epage><pages>200501-200501</pages><artnum>200501</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Current methods for classifying measurement trajectories in superconducting qubit systems produce fidelities systematically lower than those predicted by experimental parameters. Here, we place current classification methods within the framework of machine learning (ML) algorithms and improve on them by investigating more sophisticated ML approaches. We find that nonlinear algorithms and clustering methods produce significantly higher assignment fidelities that help close the gap to the fidelity possible under ideal noise conditions. Clustering methods group trajectories into natural subsets within the data, which allows for the diagnosis of systematic errors. We find large clusters in the data associated with T1 processes and show these are the main source of discrepancy between our experimental and ideal fidelities. These error diagnosis techniques help provide a path forward to improve qubit measurements.</abstract><cop>United States</cop><pmid>26047215</pmid><doi>10.1103/physrevlett.114.200501</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2015-05, Vol.114 (20), p.200501-200501, Article 200501
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1786179979
source American Physical Society Journals
subjects Algorithms
Classification
Clustering
Diagnosis
Machine learning
Production methods
Qubits (quantum computing)
Trajectories
title Machine Learning for Discriminating Quantum Measurement Trajectories and Improving Readout
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A14%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20for%20Discriminating%20Quantum%20Measurement%20Trajectories%20and%20Improving%20Readout&rft.jtitle=Physical%20review%20letters&rft.au=Magesan,%20Easwar&rft.date=2015-05-22&rft.volume=114&rft.issue=20&rft.spage=200501&rft.epage=200501&rft.pages=200501-200501&rft.artnum=200501&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.114.200501&rft_dat=%3Cproquest_cross%3E1786179979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1686411737&rft_id=info:pmid/26047215&rfr_iscdi=true