Machine Learning for Discriminating Quantum Measurement Trajectories and Improving Readout
Current methods for classifying measurement trajectories in superconducting qubit systems produce fidelities systematically lower than those predicted by experimental parameters. Here, we place current classification methods within the framework of machine learning (ML) algorithms and improve on the...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2015-05, Vol.114 (20), p.200501-200501, Article 200501 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 200501 |
---|---|
container_issue | 20 |
container_start_page | 200501 |
container_title | Physical review letters |
container_volume | 114 |
creator | Magesan, Easwar Gambetta, Jay M Córcoles, A D Chow, Jerry M |
description | Current methods for classifying measurement trajectories in superconducting qubit systems produce fidelities systematically lower than those predicted by experimental parameters. Here, we place current classification methods within the framework of machine learning (ML) algorithms and improve on them by investigating more sophisticated ML approaches. We find that nonlinear algorithms and clustering methods produce significantly higher assignment fidelities that help close the gap to the fidelity possible under ideal noise conditions. Clustering methods group trajectories into natural subsets within the data, which allows for the diagnosis of systematic errors. We find large clusters in the data associated with T1 processes and show these are the main source of discrepancy between our experimental and ideal fidelities. These error diagnosis techniques help provide a path forward to improve qubit measurements. |
doi_str_mv | 10.1103/physrevlett.114.200501 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786179979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786179979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-8fe664128cb3c6073127008a9606c0d241ace69f4013400841650c7152c883f23</originalsourceid><addsrcrecordid>eNqFUctOwzAQtBCIlscvVDlySdm1Ezs5ovKq1IqH4MIlct0NTZVHsZ1K_D2uWrhyWml2Znc0w9gIYYwI4nqz-naWtjV5H4BkzAFSwCM2RFB5rAJ0zIYAAuMcQA3YmXNrAEAus1M24BISxTEdso-5NquqpWhG2rZV-xmVnY1uK2ds1VSt9jvopdet75toTtr1lhpqffRm9ZqM72xFLtLtMpo2G9ttd_RX0suu9xfspNS1o8vDPGfv93dvk8d49vQwndzMYpMi-jgrScoEeWYWwkhQArkCyHQuQRpY8gS1IZmXCaBIwiJBmYJRmHKTZaLk4pxd7e-G_189OV80wT7VtW6p612BKpOo8lzl_1NlFqygEipQ5Z5qbOdC1GWxCYlo-10gFLsKiudQwSttZ6GCACTFvoIgHB1-9IuGln-y38zFD5aPhF8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1686411737</pqid></control><display><type>article</type><title>Machine Learning for Discriminating Quantum Measurement Trajectories and Improving Readout</title><source>American Physical Society Journals</source><creator>Magesan, Easwar ; Gambetta, Jay M ; Córcoles, A D ; Chow, Jerry M</creator><creatorcontrib>Magesan, Easwar ; Gambetta, Jay M ; Córcoles, A D ; Chow, Jerry M</creatorcontrib><description>Current methods for classifying measurement trajectories in superconducting qubit systems produce fidelities systematically lower than those predicted by experimental parameters. Here, we place current classification methods within the framework of machine learning (ML) algorithms and improve on them by investigating more sophisticated ML approaches. We find that nonlinear algorithms and clustering methods produce significantly higher assignment fidelities that help close the gap to the fidelity possible under ideal noise conditions. Clustering methods group trajectories into natural subsets within the data, which allows for the diagnosis of systematic errors. We find large clusters in the data associated with T1 processes and show these are the main source of discrepancy between our experimental and ideal fidelities. These error diagnosis techniques help provide a path forward to improve qubit measurements.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.114.200501</identifier><identifier>PMID: 26047215</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Classification ; Clustering ; Diagnosis ; Machine learning ; Production methods ; Qubits (quantum computing) ; Trajectories</subject><ispartof>Physical review letters, 2015-05, Vol.114 (20), p.200501-200501, Article 200501</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-8fe664128cb3c6073127008a9606c0d241ace69f4013400841650c7152c883f23</citedby><cites>FETCH-LOGICAL-c511t-8fe664128cb3c6073127008a9606c0d241ace69f4013400841650c7152c883f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26047215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Magesan, Easwar</creatorcontrib><creatorcontrib>Gambetta, Jay M</creatorcontrib><creatorcontrib>Córcoles, A D</creatorcontrib><creatorcontrib>Chow, Jerry M</creatorcontrib><title>Machine Learning for Discriminating Quantum Measurement Trajectories and Improving Readout</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Current methods for classifying measurement trajectories in superconducting qubit systems produce fidelities systematically lower than those predicted by experimental parameters. Here, we place current classification methods within the framework of machine learning (ML) algorithms and improve on them by investigating more sophisticated ML approaches. We find that nonlinear algorithms and clustering methods produce significantly higher assignment fidelities that help close the gap to the fidelity possible under ideal noise conditions. Clustering methods group trajectories into natural subsets within the data, which allows for the diagnosis of systematic errors. We find large clusters in the data associated with T1 processes and show these are the main source of discrepancy between our experimental and ideal fidelities. These error diagnosis techniques help provide a path forward to improve qubit measurements.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Clustering</subject><subject>Diagnosis</subject><subject>Machine learning</subject><subject>Production methods</subject><subject>Qubits (quantum computing)</subject><subject>Trajectories</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFUctOwzAQtBCIlscvVDlySdm1Ezs5ovKq1IqH4MIlct0NTZVHsZ1K_D2uWrhyWml2Znc0w9gIYYwI4nqz-naWtjV5H4BkzAFSwCM2RFB5rAJ0zIYAAuMcQA3YmXNrAEAus1M24BISxTEdso-5NquqpWhG2rZV-xmVnY1uK2ds1VSt9jvopdet75toTtr1lhpqffRm9ZqM72xFLtLtMpo2G9ttd_RX0suu9xfspNS1o8vDPGfv93dvk8d49vQwndzMYpMi-jgrScoEeWYWwkhQArkCyHQuQRpY8gS1IZmXCaBIwiJBmYJRmHKTZaLk4pxd7e-G_189OV80wT7VtW6p612BKpOo8lzl_1NlFqygEipQ5Z5qbOdC1GWxCYlo-10gFLsKiudQwSttZ6GCACTFvoIgHB1-9IuGln-y38zFD5aPhF8</recordid><startdate>20150522</startdate><enddate>20150522</enddate><creator>Magesan, Easwar</creator><creator>Gambetta, Jay M</creator><creator>Córcoles, A D</creator><creator>Chow, Jerry M</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150522</creationdate><title>Machine Learning for Discriminating Quantum Measurement Trajectories and Improving Readout</title><author>Magesan, Easwar ; Gambetta, Jay M ; Córcoles, A D ; Chow, Jerry M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-8fe664128cb3c6073127008a9606c0d241ace69f4013400841650c7152c883f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Clustering</topic><topic>Diagnosis</topic><topic>Machine learning</topic><topic>Production methods</topic><topic>Qubits (quantum computing)</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Magesan, Easwar</creatorcontrib><creatorcontrib>Gambetta, Jay M</creatorcontrib><creatorcontrib>Córcoles, A D</creatorcontrib><creatorcontrib>Chow, Jerry M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Magesan, Easwar</au><au>Gambetta, Jay M</au><au>Córcoles, A D</au><au>Chow, Jerry M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning for Discriminating Quantum Measurement Trajectories and Improving Readout</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2015-05-22</date><risdate>2015</risdate><volume>114</volume><issue>20</issue><spage>200501</spage><epage>200501</epage><pages>200501-200501</pages><artnum>200501</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Current methods for classifying measurement trajectories in superconducting qubit systems produce fidelities systematically lower than those predicted by experimental parameters. Here, we place current classification methods within the framework of machine learning (ML) algorithms and improve on them by investigating more sophisticated ML approaches. We find that nonlinear algorithms and clustering methods produce significantly higher assignment fidelities that help close the gap to the fidelity possible under ideal noise conditions. Clustering methods group trajectories into natural subsets within the data, which allows for the diagnosis of systematic errors. We find large clusters in the data associated with T1 processes and show these are the main source of discrepancy between our experimental and ideal fidelities. These error diagnosis techniques help provide a path forward to improve qubit measurements.</abstract><cop>United States</cop><pmid>26047215</pmid><doi>10.1103/physrevlett.114.200501</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2015-05, Vol.114 (20), p.200501-200501, Article 200501 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786179979 |
source | American Physical Society Journals |
subjects | Algorithms Classification Clustering Diagnosis Machine learning Production methods Qubits (quantum computing) Trajectories |
title | Machine Learning for Discriminating Quantum Measurement Trajectories and Improving Readout |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A14%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20for%20Discriminating%20Quantum%20Measurement%20Trajectories%20and%20Improving%20Readout&rft.jtitle=Physical%20review%20letters&rft.au=Magesan,%20Easwar&rft.date=2015-05-22&rft.volume=114&rft.issue=20&rft.spage=200501&rft.epage=200501&rft.pages=200501-200501&rft.artnum=200501&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.114.200501&rft_dat=%3Cproquest_cross%3E1786179979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1686411737&rft_id=info:pmid/26047215&rfr_iscdi=true |