A novel scalar tracking method for optimising film cooling systems

The purpose of this paper is to outline a novel passive-scalar tracking method for computational fluid dynamics optimisation studies. An example of its utility is in isolating the contributions of individual film cooling holes to overall cooling effectiveness on a heavily film cooled component. To i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy Journal of power and energy, 2016-02, Vol.230 (1), p.3-15
Hauptverfasser: Thomas, Mitra, Povey, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 1
container_start_page 3
container_title Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy
container_volume 230
creator Thomas, Mitra
Povey, Thomas
description The purpose of this paper is to outline a novel passive-scalar tracking method for computational fluid dynamics optimisation studies. An example of its utility is in isolating the contributions of individual film cooling holes to overall cooling effectiveness on a heavily film cooled component. To isolate individual cooling contributions, passive (not a physical property of the flow, and therefore non-interacting) scalar variables are associated with the flow at each cooling hole outlet, with the scalar variable diffusivity set equal to the effective turbulent thermal diffusivity to replicate the mixing behaviour of the thermal field. The scalar tracking method is demonstrated by application to the optimisation of a nozzle guide vane endwall film cooling system, allowing a highly optimised system to be designed in three to five computational fluid dynamics simulations, orders of magnitude faster than optimisations performed using automated design space exploration. The test case for the method is an improved design of platform cooling system in which a relatively small quantity of high-momentum coolant is injected upstream of the vanes to reduce the total pressure deficit in near-wall region, followed by additional film cooling in low Mach number regions deeper into the passage. The optimised design uses half the coolant mass flow of a baseline design, while maintaining similar cooling effectiveness levels in critical regions.
doi_str_mv 10.1177/0957650915605944
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786179546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0957650915605944</sage_id><sourcerecordid>1786179546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-1217a01f39fa2135a2741e0abff00044b8bea0b29c010a4c661a91f0b41712793</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7ePRa8eKnOpPlojuviFyx40XNJY7J2bZs16Qr735tSD7LgXIaZ-b3h8Qi5RLhBlPIWFJeCg0IugCvGjsiMAsOcKiGPyWw85-P9lJzFuIFUXNIZuVtkvf-2bRaNbnXIhqDNZ9Ovs84OH_49cz5kfjs0XRPHrWvaLjPet-MQ93GwXTwnJ0630V789jl5e7h_XT7lq5fH5-VilZuiZEOOFKUGdIVymmLBNZUMLejauWSGsbqsrYaaKgMImhkhUCt0UDOUSKUq5uR6-rsN_mtn41AlU8a2re6t38UKZSlQKs5EQq8O0I3fhT65S5QoC1qUwBMFE2WCjzFYV21D0-mwrxCqMdTqMNQkySdJ1Gv75-l__A96k3SJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1768323805</pqid></control><display><type>article</type><title>A novel scalar tracking method for optimising film cooling systems</title><source>SAGE Complete</source><creator>Thomas, Mitra ; Povey, Thomas</creator><creatorcontrib>Thomas, Mitra ; Povey, Thomas</creatorcontrib><description>The purpose of this paper is to outline a novel passive-scalar tracking method for computational fluid dynamics optimisation studies. An example of its utility is in isolating the contributions of individual film cooling holes to overall cooling effectiveness on a heavily film cooled component. To isolate individual cooling contributions, passive (not a physical property of the flow, and therefore non-interacting) scalar variables are associated with the flow at each cooling hole outlet, with the scalar variable diffusivity set equal to the effective turbulent thermal diffusivity to replicate the mixing behaviour of the thermal field. The scalar tracking method is demonstrated by application to the optimisation of a nozzle guide vane endwall film cooling system, allowing a highly optimised system to be designed in three to five computational fluid dynamics simulations, orders of magnitude faster than optimisations performed using automated design space exploration. The test case for the method is an improved design of platform cooling system in which a relatively small quantity of high-momentum coolant is injected upstream of the vanes to reduce the total pressure deficit in near-wall region, followed by additional film cooling in low Mach number regions deeper into the passage. The optimised design uses half the coolant mass flow of a baseline design, while maintaining similar cooling effectiveness levels in critical regions.</description><identifier>ISSN: 0957-6509</identifier><identifier>EISSN: 2041-2967</identifier><identifier>DOI: 10.1177/0957650915605944</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Cooling ; Cooling effects ; Design engineering ; Dynamical systems ; Film cooling ; Fluid dynamics ; Optimization ; Scalars ; Simulation ; Tracking ; Tracking control systems ; Turbulent flow</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy, 2016-02, Vol.230 (1), p.3-15</ispartof><rights>IMechE 2015</rights><rights>Copyright SAGE PUBLICATIONS, INC. Feb 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-1217a01f39fa2135a2741e0abff00044b8bea0b29c010a4c661a91f0b41712793</citedby><cites>FETCH-LOGICAL-c384t-1217a01f39fa2135a2741e0abff00044b8bea0b29c010a4c661a91f0b41712793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0957650915605944$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0957650915605944$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Thomas, Mitra</creatorcontrib><creatorcontrib>Povey, Thomas</creatorcontrib><title>A novel scalar tracking method for optimising film cooling systems</title><title>Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy</title><description>The purpose of this paper is to outline a novel passive-scalar tracking method for computational fluid dynamics optimisation studies. An example of its utility is in isolating the contributions of individual film cooling holes to overall cooling effectiveness on a heavily film cooled component. To isolate individual cooling contributions, passive (not a physical property of the flow, and therefore non-interacting) scalar variables are associated with the flow at each cooling hole outlet, with the scalar variable diffusivity set equal to the effective turbulent thermal diffusivity to replicate the mixing behaviour of the thermal field. The scalar tracking method is demonstrated by application to the optimisation of a nozzle guide vane endwall film cooling system, allowing a highly optimised system to be designed in three to five computational fluid dynamics simulations, orders of magnitude faster than optimisations performed using automated design space exploration. The test case for the method is an improved design of platform cooling system in which a relatively small quantity of high-momentum coolant is injected upstream of the vanes to reduce the total pressure deficit in near-wall region, followed by additional film cooling in low Mach number regions deeper into the passage. The optimised design uses half the coolant mass flow of a baseline design, while maintaining similar cooling effectiveness levels in critical regions.</description><subject>Cooling</subject><subject>Cooling effects</subject><subject>Design engineering</subject><subject>Dynamical systems</subject><subject>Film cooling</subject><subject>Fluid dynamics</subject><subject>Optimization</subject><subject>Scalars</subject><subject>Simulation</subject><subject>Tracking</subject><subject>Tracking control systems</subject><subject>Turbulent flow</subject><issn>0957-6509</issn><issn>2041-2967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouK7ePRa8eKnOpPlojuviFyx40XNJY7J2bZs16Qr735tSD7LgXIaZ-b3h8Qi5RLhBlPIWFJeCg0IugCvGjsiMAsOcKiGPyWw85-P9lJzFuIFUXNIZuVtkvf-2bRaNbnXIhqDNZ9Ovs84OH_49cz5kfjs0XRPHrWvaLjPet-MQ93GwXTwnJ0630V789jl5e7h_XT7lq5fH5-VilZuiZEOOFKUGdIVymmLBNZUMLejauWSGsbqsrYaaKgMImhkhUCt0UDOUSKUq5uR6-rsN_mtn41AlU8a2re6t38UKZSlQKs5EQq8O0I3fhT65S5QoC1qUwBMFE2WCjzFYV21D0-mwrxCqMdTqMNQkySdJ1Gv75-l__A96k3SJ</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Thomas, Mitra</creator><creator>Povey, Thomas</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201602</creationdate><title>A novel scalar tracking method for optimising film cooling systems</title><author>Thomas, Mitra ; Povey, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-1217a01f39fa2135a2741e0abff00044b8bea0b29c010a4c661a91f0b41712793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cooling</topic><topic>Cooling effects</topic><topic>Design engineering</topic><topic>Dynamical systems</topic><topic>Film cooling</topic><topic>Fluid dynamics</topic><topic>Optimization</topic><topic>Scalars</topic><topic>Simulation</topic><topic>Tracking</topic><topic>Tracking control systems</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, Mitra</creatorcontrib><creatorcontrib>Povey, Thomas</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, Mitra</au><au>Povey, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel scalar tracking method for optimising film cooling systems</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy</jtitle><date>2016-02</date><risdate>2016</risdate><volume>230</volume><issue>1</issue><spage>3</spage><epage>15</epage><pages>3-15</pages><issn>0957-6509</issn><eissn>2041-2967</eissn><abstract>The purpose of this paper is to outline a novel passive-scalar tracking method for computational fluid dynamics optimisation studies. An example of its utility is in isolating the contributions of individual film cooling holes to overall cooling effectiveness on a heavily film cooled component. To isolate individual cooling contributions, passive (not a physical property of the flow, and therefore non-interacting) scalar variables are associated with the flow at each cooling hole outlet, with the scalar variable diffusivity set equal to the effective turbulent thermal diffusivity to replicate the mixing behaviour of the thermal field. The scalar tracking method is demonstrated by application to the optimisation of a nozzle guide vane endwall film cooling system, allowing a highly optimised system to be designed in three to five computational fluid dynamics simulations, orders of magnitude faster than optimisations performed using automated design space exploration. The test case for the method is an improved design of platform cooling system in which a relatively small quantity of high-momentum coolant is injected upstream of the vanes to reduce the total pressure deficit in near-wall region, followed by additional film cooling in low Mach number regions deeper into the passage. The optimised design uses half the coolant mass flow of a baseline design, while maintaining similar cooling effectiveness levels in critical regions.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0957650915605944</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-6509
ispartof Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy, 2016-02, Vol.230 (1), p.3-15
issn 0957-6509
2041-2967
language eng
recordid cdi_proquest_miscellaneous_1786179546
source SAGE Complete
subjects Cooling
Cooling effects
Design engineering
Dynamical systems
Film cooling
Fluid dynamics
Optimization
Scalars
Simulation
Tracking
Tracking control systems
Turbulent flow
title A novel scalar tracking method for optimising film cooling systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T09%3A16%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20scalar%20tracking%20method%20for%20optimising%20film%20cooling%20systems&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20A,%20Journal%20of%20power%20and%20energy&rft.au=Thomas,%20Mitra&rft.date=2016-02&rft.volume=230&rft.issue=1&rft.spage=3&rft.epage=15&rft.pages=3-15&rft.issn=0957-6509&rft.eissn=2041-2967&rft_id=info:doi/10.1177/0957650915605944&rft_dat=%3Cproquest_cross%3E1786179546%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1768323805&rft_id=info:pmid/&rft_sage_id=10.1177_0957650915605944&rfr_iscdi=true