Network Expansion Planning Using Improved Controlled NSGA-II

SUMMARY This paper presents the application of multiobjective optimization methods to network expansion planning. Distribution network expansion planning minimizes system cost and distribution loss while satisfying the constraints. Problem formulation yields combinatorial optimization problems that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrical engineering in Japan 2015-12, Vol.193 (4), p.38-48
Hauptverfasser: Okabe, Masanori, Shahrin, Mohd, Aoki, Hidenori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 4
container_start_page 38
container_title Electrical engineering in Japan
container_volume 193
creator Okabe, Masanori
Shahrin, Mohd
Aoki, Hidenori
description SUMMARY This paper presents the application of multiobjective optimization methods to network expansion planning. Distribution network expansion planning minimizes system cost and distribution loss while satisfying the constraints. Problem formulation yields combinatorial optimization problems that are difficult to solve due to their complexity. This research applies a genetic algorithm, which is a meta‐heuristics method. The present study proposes a new method of multiobjective optimization: NSGA‐II, SPEA2, and Controlled NSGA‐II are assumed to be the best methods now. The proposed method introduces the concept of a linkage identification genetic algorithm, enabling more efficient searching than methods hitherto known. In the past, most research on network expansion planning did not include the load curve. This research demonstrates that the investigation must include the load curve. It also proposes a new method of search including the load curve.
doi_str_mv 10.1002/eej.22766
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786176945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786176945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3666-31d0f46cbaa678b9aad973b2ad03d20784e3c6ea56fe6fbed9c6ee9fc69fa6483</originalsourceid><addsrcrecordid>eNp1kE9PwkAQxTdGExE9-A161ENht9vOtokXQhBrSDVBorfNtp2aQmlxtwh8exer3rzMn-T3Jm8eIdeMDhil3hBxOfA8AXBCeizwqAs-g1PSo77nu0IAPScXxiwppYKJsEfuEmx3jV45k_1G1aZsaue5UnVd1u_OwhxrvN7o5hNzZ9zUrW6qyo7JfDpy4_iSnBWqMnj10_tkcT95GT-4s6dpPB7N3IwDgMtZTgsfslQpEGEaKZVHgqeeyinPPSpCH3kGqAIoEIoU88huGBUZRIUCP-R9ctPdtU4-tmhauS5NhpU1is3WSPsJMAGRH1j0tkMz3RijsZAbXa6VPkhG5TEhaROS3wlZdtixu7LCw_-gnEwefxVupyhNi_s_hdIrCYKLQL4mU8kFTZJ5MJdv_Au3YnaH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786176945</pqid></control><display><type>article</type><title>Network Expansion Planning Using Improved Controlled NSGA-II</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Okabe, Masanori ; Shahrin, Mohd ; Aoki, Hidenori</creator><creatorcontrib>Okabe, Masanori ; Shahrin, Mohd ; Aoki, Hidenori</creatorcontrib><description>SUMMARY This paper presents the application of multiobjective optimization methods to network expansion planning. Distribution network expansion planning minimizes system cost and distribution loss while satisfying the constraints. Problem formulation yields combinatorial optimization problems that are difficult to solve due to their complexity. This research applies a genetic algorithm, which is a meta‐heuristics method. The present study proposes a new method of multiobjective optimization: NSGA‐II, SPEA2, and Controlled NSGA‐II are assumed to be the best methods now. The proposed method introduces the concept of a linkage identification genetic algorithm, enabling more efficient searching than methods hitherto known. In the past, most research on network expansion planning did not include the load curve. This research demonstrates that the investigation must include the load curve. It also proposes a new method of search including the load curve.</description><identifier>ISSN: 0424-7760</identifier><identifier>EISSN: 1520-6416</identifier><identifier>DOI: 10.1002/eej.22766</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Combinatorial analysis ; Cost engineering ; daily load curve ; distribution network expansion planning ; Electrical engineering ; Genetic algorithms ; linkage identification genetic algorithm ; Linkages ; multiobjective optimization ; Networks ; Optimization ; Searching</subject><ispartof>Electrical engineering in Japan, 2015-12, Vol.193 (4), p.38-48</ispartof><rights>2015 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3666-31d0f46cbaa678b9aad973b2ad03d20784e3c6ea56fe6fbed9c6ee9fc69fa6483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Feej.22766$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Feej.22766$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Okabe, Masanori</creatorcontrib><creatorcontrib>Shahrin, Mohd</creatorcontrib><creatorcontrib>Aoki, Hidenori</creatorcontrib><title>Network Expansion Planning Using Improved Controlled NSGA-II</title><title>Electrical engineering in Japan</title><addtitle>Electr Eng Jpn</addtitle><description>SUMMARY This paper presents the application of multiobjective optimization methods to network expansion planning. Distribution network expansion planning minimizes system cost and distribution loss while satisfying the constraints. Problem formulation yields combinatorial optimization problems that are difficult to solve due to their complexity. This research applies a genetic algorithm, which is a meta‐heuristics method. The present study proposes a new method of multiobjective optimization: NSGA‐II, SPEA2, and Controlled NSGA‐II are assumed to be the best methods now. The proposed method introduces the concept of a linkage identification genetic algorithm, enabling more efficient searching than methods hitherto known. In the past, most research on network expansion planning did not include the load curve. This research demonstrates that the investigation must include the load curve. It also proposes a new method of search including the load curve.</description><subject>Combinatorial analysis</subject><subject>Cost engineering</subject><subject>daily load curve</subject><subject>distribution network expansion planning</subject><subject>Electrical engineering</subject><subject>Genetic algorithms</subject><subject>linkage identification genetic algorithm</subject><subject>Linkages</subject><subject>multiobjective optimization</subject><subject>Networks</subject><subject>Optimization</subject><subject>Searching</subject><issn>0424-7760</issn><issn>1520-6416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PwkAQxTdGExE9-A161ENht9vOtokXQhBrSDVBorfNtp2aQmlxtwh8exer3rzMn-T3Jm8eIdeMDhil3hBxOfA8AXBCeizwqAs-g1PSo77nu0IAPScXxiwppYKJsEfuEmx3jV45k_1G1aZsaue5UnVd1u_OwhxrvN7o5hNzZ9zUrW6qyo7JfDpy4_iSnBWqMnj10_tkcT95GT-4s6dpPB7N3IwDgMtZTgsfslQpEGEaKZVHgqeeyinPPSpCH3kGqAIoEIoU88huGBUZRIUCP-R9ctPdtU4-tmhauS5NhpU1is3WSPsJMAGRH1j0tkMz3RijsZAbXa6VPkhG5TEhaROS3wlZdtixu7LCw_-gnEwefxVupyhNi_s_hdIrCYKLQL4mU8kFTZJ5MJdv_Au3YnaH</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Okabe, Masanori</creator><creator>Shahrin, Mohd</creator><creator>Aoki, Hidenori</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201512</creationdate><title>Network Expansion Planning Using Improved Controlled NSGA-II</title><author>Okabe, Masanori ; Shahrin, Mohd ; Aoki, Hidenori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3666-31d0f46cbaa678b9aad973b2ad03d20784e3c6ea56fe6fbed9c6ee9fc69fa6483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Combinatorial analysis</topic><topic>Cost engineering</topic><topic>daily load curve</topic><topic>distribution network expansion planning</topic><topic>Electrical engineering</topic><topic>Genetic algorithms</topic><topic>linkage identification genetic algorithm</topic><topic>Linkages</topic><topic>multiobjective optimization</topic><topic>Networks</topic><topic>Optimization</topic><topic>Searching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okabe, Masanori</creatorcontrib><creatorcontrib>Shahrin, Mohd</creatorcontrib><creatorcontrib>Aoki, Hidenori</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrical engineering in Japan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okabe, Masanori</au><au>Shahrin, Mohd</au><au>Aoki, Hidenori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network Expansion Planning Using Improved Controlled NSGA-II</atitle><jtitle>Electrical engineering in Japan</jtitle><addtitle>Electr Eng Jpn</addtitle><date>2015-12</date><risdate>2015</risdate><volume>193</volume><issue>4</issue><spage>38</spage><epage>48</epage><pages>38-48</pages><issn>0424-7760</issn><eissn>1520-6416</eissn><abstract>SUMMARY This paper presents the application of multiobjective optimization methods to network expansion planning. Distribution network expansion planning minimizes system cost and distribution loss while satisfying the constraints. Problem formulation yields combinatorial optimization problems that are difficult to solve due to their complexity. This research applies a genetic algorithm, which is a meta‐heuristics method. The present study proposes a new method of multiobjective optimization: NSGA‐II, SPEA2, and Controlled NSGA‐II are assumed to be the best methods now. The proposed method introduces the concept of a linkage identification genetic algorithm, enabling more efficient searching than methods hitherto known. In the past, most research on network expansion planning did not include the load curve. This research demonstrates that the investigation must include the load curve. It also proposes a new method of search including the load curve.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/eej.22766</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0424-7760
ispartof Electrical engineering in Japan, 2015-12, Vol.193 (4), p.38-48
issn 0424-7760
1520-6416
language eng
recordid cdi_proquest_miscellaneous_1786176945
source Wiley Online Library Journals Frontfile Complete
subjects Combinatorial analysis
Cost engineering
daily load curve
distribution network expansion planning
Electrical engineering
Genetic algorithms
linkage identification genetic algorithm
Linkages
multiobjective optimization
Networks
Optimization
Searching
title Network Expansion Planning Using Improved Controlled NSGA-II
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A23%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20Expansion%20Planning%20Using%20Improved%20Controlled%20NSGA-II&rft.jtitle=Electrical%20engineering%20in%20Japan&rft.au=Okabe,%20Masanori&rft.date=2015-12&rft.volume=193&rft.issue=4&rft.spage=38&rft.epage=48&rft.pages=38-48&rft.issn=0424-7760&rft.eissn=1520-6416&rft_id=info:doi/10.1002/eej.22766&rft_dat=%3Cproquest_cross%3E1786176945%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786176945&rft_id=info:pmid/&rfr_iscdi=true