Synthesis and Reactivity of Ruthenium-Antimony Carbonyl Clusters
The reaction of Na[HRu3(CO)11] (2) with SbPh2Cl in dry tetrahydrofuran (THF) afforded the cluster Ru3(CO)10(μ‐H)(μ‐SbPh2) (3); in dry dichloromethane (DCM), the six‐membered ring Ru6(CO)20(μ‐H)2(μ‐SbPh2)2 (4) was obtained instead. The trimethylamine N‐oxide (TMNO) activated reaction of Ru3(CO)12 (1)...
Gespeichert in:
Veröffentlicht in: | European journal of inorganic chemistry 2015-08, Vol.2015 (23), p.3861-3872 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3872 |
---|---|
container_issue | 23 |
container_start_page | 3861 |
container_title | European journal of inorganic chemistry |
container_volume | 2015 |
creator | Li, Ying-Zhou Ganguly, Rakesh Leong, Weng Kee Liu, Yang |
description | The reaction of Na[HRu3(CO)11] (2) with SbPh2Cl in dry tetrahydrofuran (THF) afforded the cluster Ru3(CO)10(μ‐H)(μ‐SbPh2) (3); in dry dichloromethane (DCM), the six‐membered ring Ru6(CO)20(μ‐H)2(μ‐SbPh2)2 (4) was obtained instead. The trimethylamine N‐oxide (TMNO) activated reaction of Ru3(CO)12 (1) with distibine Sb2Ph4 produced Ru3(CO)10(μ‐SbPh2)2 (6) through an Sb–Sb bond oxidative addition. Cluster 6 is fluxional through Ru–Ru bond isomerization. In contrast, its group 15 monosubstituted derivatives Ru3(CO)9(μ‐SbPh2)2(L) (7, L = phosphane, arsine or stibine) or the disubstituted derivatives Ru3(CO)8(μ‐SbPh2)2(L)2 (8) did not exhibit such fluxionality. Instead, isomerization through a turnstile mechanism involving the group 15 ligand occurred. The treatment of 6 with SbPh2Cl afforded the fused‐ring clusters Ru3(CO)9(μ‐SbPh2)3(Cl) (9) and Ru3(CO)8(μ‐SbPh2)3(Cl)(SbPh2CH2Cl) (10).
A series of ruthenium–antimony carbonyl clusters are prepared by the oxidative addition of Sb–Cl or Sb–Sb bonds to lightly stabilized ruthenium carbonyl clusters. Their solid‐ and solution‐state structures are studied in detail by X‐ray crystallography and variable‐temperature multinuclear NMR experiments, respectively. |
doi_str_mv | 10.1002/ejic.201500522 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786175271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3963512401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3882-8ae99c289b9273a0044ad2a4b6e5b9e59ff9768954205e8b86d1dd3514269f0b3</originalsourceid><addsrcrecordid>eNqFkEtLxDAURosoOD62rgtu3HS8SZrXTi0-ER1nfCxD2qaYsdNq0qr992YYEXHj6rtwz7lcvijaQzBGAPjQzG0xxoAoAMV4LRohkDIBJvB6mFOSJkimYjPa8n4OAAQIG0VHs6Hpno23PtZNGU-NLjr7brshbqt42odVY_tFctx0dtE2Q5xpl4es46zufWec34k2Kl17s_ud29HD2el9dpFc355fZsfXSUGEwInQRsoCC5lLzIkGSFNdYp3mzNBcGiqrSnImJE0xUCNywUpUloSiFDNZQU62o4PV3VfXvvXGd2phfWHqWjem7b1CXDDEKeYooPt_0HnbuyZ8FyjGpSAIy0CNV1ThWu-dqdSrswvtBoVALQtVy0LVT6FBkCvhw9Zm-IdWp1eX2W83Wbk2lPb542r3ohgnnKqnm3N1N3k8mZLZRHHyBRD9h7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767983129</pqid></control><display><type>article</type><title>Synthesis and Reactivity of Ruthenium-Antimony Carbonyl Clusters</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Ying-Zhou ; Ganguly, Rakesh ; Leong, Weng Kee ; Liu, Yang</creator><creatorcontrib>Li, Ying-Zhou ; Ganguly, Rakesh ; Leong, Weng Kee ; Liu, Yang</creatorcontrib><description>The reaction of Na[HRu3(CO)11] (2) with SbPh2Cl in dry tetrahydrofuran (THF) afforded the cluster Ru3(CO)10(μ‐H)(μ‐SbPh2) (3); in dry dichloromethane (DCM), the six‐membered ring Ru6(CO)20(μ‐H)2(μ‐SbPh2)2 (4) was obtained instead. The trimethylamine N‐oxide (TMNO) activated reaction of Ru3(CO)12 (1) with distibine Sb2Ph4 produced Ru3(CO)10(μ‐SbPh2)2 (6) through an Sb–Sb bond oxidative addition. Cluster 6 is fluxional through Ru–Ru bond isomerization. In contrast, its group 15 monosubstituted derivatives Ru3(CO)9(μ‐SbPh2)2(L) (7, L = phosphane, arsine or stibine) or the disubstituted derivatives Ru3(CO)8(μ‐SbPh2)2(L)2 (8) did not exhibit such fluxionality. Instead, isomerization through a turnstile mechanism involving the group 15 ligand occurred. The treatment of 6 with SbPh2Cl afforded the fused‐ring clusters Ru3(CO)9(μ‐SbPh2)3(Cl) (9) and Ru3(CO)8(μ‐SbPh2)3(Cl)(SbPh2CH2Cl) (10).
A series of ruthenium–antimony carbonyl clusters are prepared by the oxidative addition of Sb–Cl or Sb–Sb bonds to lightly stabilized ruthenium carbonyl clusters. Their solid‐ and solution‐state structures are studied in detail by X‐ray crystallography and variable‐temperature multinuclear NMR experiments, respectively.</description><identifier>ISSN: 1434-1948</identifier><identifier>EISSN: 1099-0682</identifier><identifier>DOI: 10.1002/ejic.201500522</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Antimony ; Bonding ; Carbonyl ligands ; Carbonyls ; Cluster compounds ; Clusters ; Derivatives ; Drying ; Isomerization ; Ligands ; Metal-metal bonds ; Ruthenium</subject><ispartof>European journal of inorganic chemistry, 2015-08, Vol.2015 (23), p.3861-3872</ispartof><rights>Copyright © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3882-8ae99c289b9273a0044ad2a4b6e5b9e59ff9768954205e8b86d1dd3514269f0b3</citedby><cites>FETCH-LOGICAL-c3882-8ae99c289b9273a0044ad2a4b6e5b9e59ff9768954205e8b86d1dd3514269f0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fejic.201500522$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fejic.201500522$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Li, Ying-Zhou</creatorcontrib><creatorcontrib>Ganguly, Rakesh</creatorcontrib><creatorcontrib>Leong, Weng Kee</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><title>Synthesis and Reactivity of Ruthenium-Antimony Carbonyl Clusters</title><title>European journal of inorganic chemistry</title><addtitle>Eur. J. Inorg. Chem</addtitle><description>The reaction of Na[HRu3(CO)11] (2) with SbPh2Cl in dry tetrahydrofuran (THF) afforded the cluster Ru3(CO)10(μ‐H)(μ‐SbPh2) (3); in dry dichloromethane (DCM), the six‐membered ring Ru6(CO)20(μ‐H)2(μ‐SbPh2)2 (4) was obtained instead. The trimethylamine N‐oxide (TMNO) activated reaction of Ru3(CO)12 (1) with distibine Sb2Ph4 produced Ru3(CO)10(μ‐SbPh2)2 (6) through an Sb–Sb bond oxidative addition. Cluster 6 is fluxional through Ru–Ru bond isomerization. In contrast, its group 15 monosubstituted derivatives Ru3(CO)9(μ‐SbPh2)2(L) (7, L = phosphane, arsine or stibine) or the disubstituted derivatives Ru3(CO)8(μ‐SbPh2)2(L)2 (8) did not exhibit such fluxionality. Instead, isomerization through a turnstile mechanism involving the group 15 ligand occurred. The treatment of 6 with SbPh2Cl afforded the fused‐ring clusters Ru3(CO)9(μ‐SbPh2)3(Cl) (9) and Ru3(CO)8(μ‐SbPh2)3(Cl)(SbPh2CH2Cl) (10).
A series of ruthenium–antimony carbonyl clusters are prepared by the oxidative addition of Sb–Cl or Sb–Sb bonds to lightly stabilized ruthenium carbonyl clusters. Their solid‐ and solution‐state structures are studied in detail by X‐ray crystallography and variable‐temperature multinuclear NMR experiments, respectively.</description><subject>Antimony</subject><subject>Bonding</subject><subject>Carbonyl ligands</subject><subject>Carbonyls</subject><subject>Cluster compounds</subject><subject>Clusters</subject><subject>Derivatives</subject><subject>Drying</subject><subject>Isomerization</subject><subject>Ligands</subject><subject>Metal-metal bonds</subject><subject>Ruthenium</subject><issn>1434-1948</issn><issn>1099-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAURosoOD62rgtu3HS8SZrXTi0-ER1nfCxD2qaYsdNq0qr992YYEXHj6rtwz7lcvijaQzBGAPjQzG0xxoAoAMV4LRohkDIBJvB6mFOSJkimYjPa8n4OAAQIG0VHs6Hpno23PtZNGU-NLjr7brshbqt42odVY_tFctx0dtE2Q5xpl4es46zufWec34k2Kl17s_ud29HD2el9dpFc355fZsfXSUGEwInQRsoCC5lLzIkGSFNdYp3mzNBcGiqrSnImJE0xUCNywUpUloSiFDNZQU62o4PV3VfXvvXGd2phfWHqWjem7b1CXDDEKeYooPt_0HnbuyZ8FyjGpSAIy0CNV1ThWu-dqdSrswvtBoVALQtVy0LVT6FBkCvhw9Zm-IdWp1eX2W83Wbk2lPb542r3ohgnnKqnm3N1N3k8mZLZRHHyBRD9h7g</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Li, Ying-Zhou</creator><creator>Ganguly, Rakesh</creator><creator>Leong, Weng Kee</creator><creator>Liu, Yang</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201508</creationdate><title>Synthesis and Reactivity of Ruthenium-Antimony Carbonyl Clusters</title><author>Li, Ying-Zhou ; Ganguly, Rakesh ; Leong, Weng Kee ; Liu, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3882-8ae99c289b9273a0044ad2a4b6e5b9e59ff9768954205e8b86d1dd3514269f0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Antimony</topic><topic>Bonding</topic><topic>Carbonyl ligands</topic><topic>Carbonyls</topic><topic>Cluster compounds</topic><topic>Clusters</topic><topic>Derivatives</topic><topic>Drying</topic><topic>Isomerization</topic><topic>Ligands</topic><topic>Metal-metal bonds</topic><topic>Ruthenium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ying-Zhou</creatorcontrib><creatorcontrib>Ganguly, Rakesh</creatorcontrib><creatorcontrib>Leong, Weng Kee</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>European journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ying-Zhou</au><au>Ganguly, Rakesh</au><au>Leong, Weng Kee</au><au>Liu, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and Reactivity of Ruthenium-Antimony Carbonyl Clusters</atitle><jtitle>European journal of inorganic chemistry</jtitle><addtitle>Eur. J. Inorg. Chem</addtitle><date>2015-08</date><risdate>2015</risdate><volume>2015</volume><issue>23</issue><spage>3861</spage><epage>3872</epage><pages>3861-3872</pages><issn>1434-1948</issn><eissn>1099-0682</eissn><abstract>The reaction of Na[HRu3(CO)11] (2) with SbPh2Cl in dry tetrahydrofuran (THF) afforded the cluster Ru3(CO)10(μ‐H)(μ‐SbPh2) (3); in dry dichloromethane (DCM), the six‐membered ring Ru6(CO)20(μ‐H)2(μ‐SbPh2)2 (4) was obtained instead. The trimethylamine N‐oxide (TMNO) activated reaction of Ru3(CO)12 (1) with distibine Sb2Ph4 produced Ru3(CO)10(μ‐SbPh2)2 (6) through an Sb–Sb bond oxidative addition. Cluster 6 is fluxional through Ru–Ru bond isomerization. In contrast, its group 15 monosubstituted derivatives Ru3(CO)9(μ‐SbPh2)2(L) (7, L = phosphane, arsine or stibine) or the disubstituted derivatives Ru3(CO)8(μ‐SbPh2)2(L)2 (8) did not exhibit such fluxionality. Instead, isomerization through a turnstile mechanism involving the group 15 ligand occurred. The treatment of 6 with SbPh2Cl afforded the fused‐ring clusters Ru3(CO)9(μ‐SbPh2)3(Cl) (9) and Ru3(CO)8(μ‐SbPh2)3(Cl)(SbPh2CH2Cl) (10).
A series of ruthenium–antimony carbonyl clusters are prepared by the oxidative addition of Sb–Cl or Sb–Sb bonds to lightly stabilized ruthenium carbonyl clusters. Their solid‐ and solution‐state structures are studied in detail by X‐ray crystallography and variable‐temperature multinuclear NMR experiments, respectively.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/ejic.201500522</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-1948 |
ispartof | European journal of inorganic chemistry, 2015-08, Vol.2015 (23), p.3861-3872 |
issn | 1434-1948 1099-0682 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786175271 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Antimony Bonding Carbonyl ligands Carbonyls Cluster compounds Clusters Derivatives Drying Isomerization Ligands Metal-metal bonds Ruthenium |
title | Synthesis and Reactivity of Ruthenium-Antimony Carbonyl Clusters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20Reactivity%20of%20Ruthenium-Antimony%20Carbonyl%20Clusters&rft.jtitle=European%20journal%20of%20inorganic%20chemistry&rft.au=Li,%20Ying-Zhou&rft.date=2015-08&rft.volume=2015&rft.issue=23&rft.spage=3861&rft.epage=3872&rft.pages=3861-3872&rft.issn=1434-1948&rft.eissn=1099-0682&rft_id=info:doi/10.1002/ejic.201500522&rft_dat=%3Cproquest_cross%3E3963512401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1767983129&rft_id=info:pmid/&rfr_iscdi=true |