Synthesis and Reactivity of Ruthenium-Antimony Carbonyl Clusters

The reaction of Na[HRu3(CO)11] (2) with SbPh2Cl in dry tetrahydrofuran (THF) afforded the cluster Ru3(CO)10(μ‐H)(μ‐SbPh2) (3); in dry dichloromethane (DCM), the six‐membered ring Ru6(CO)20(μ‐H)2(μ‐SbPh2)2 (4) was obtained instead. The trimethylamine N‐oxide (TMNO) activated reaction of Ru3(CO)12 (1)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of inorganic chemistry 2015-08, Vol.2015 (23), p.3861-3872
Hauptverfasser: Li, Ying-Zhou, Ganguly, Rakesh, Leong, Weng Kee, Liu, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3872
container_issue 23
container_start_page 3861
container_title European journal of inorganic chemistry
container_volume 2015
creator Li, Ying-Zhou
Ganguly, Rakesh
Leong, Weng Kee
Liu, Yang
description The reaction of Na[HRu3(CO)11] (2) with SbPh2Cl in dry tetrahydrofuran (THF) afforded the cluster Ru3(CO)10(μ‐H)(μ‐SbPh2) (3); in dry dichloromethane (DCM), the six‐membered ring Ru6(CO)20(μ‐H)2(μ‐SbPh2)2 (4) was obtained instead. The trimethylamine N‐oxide (TMNO) activated reaction of Ru3(CO)12 (1) with distibine Sb2Ph4 produced Ru3(CO)10(μ‐SbPh2)2 (6) through an Sb–Sb bond oxidative addition. Cluster 6 is fluxional through Ru–Ru bond isomerization. In contrast, its group 15 monosubstituted derivatives Ru3(CO)9(μ‐SbPh2)2(L) (7, L = phosphane, arsine or stibine) or the disubstituted derivatives Ru3(CO)8(μ‐SbPh2)2(L)2 (8) did not exhibit such fluxionality. Instead, isomerization through a turnstile mechanism involving the group 15 ligand occurred. The treatment of 6 with SbPh2Cl afforded the fused‐ring clusters Ru3(CO)9(μ‐SbPh2)3(Cl) (9) and Ru3(CO)8(μ‐SbPh2)3(Cl)(SbPh2CH2Cl) (10). A series of ruthenium–antimony carbonyl clusters are prepared by the oxidative addition of Sb–Cl or Sb–Sb bonds to lightly stabilized ruthenium carbonyl clusters. Their solid‐ and solution‐state structures are studied in detail by X‐ray crystallography and variable‐temperature multinuclear NMR experiments, respectively.
doi_str_mv 10.1002/ejic.201500522
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786175271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3963512401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3882-8ae99c289b9273a0044ad2a4b6e5b9e59ff9768954205e8b86d1dd3514269f0b3</originalsourceid><addsrcrecordid>eNqFkEtLxDAURosoOD62rgtu3HS8SZrXTi0-ER1nfCxD2qaYsdNq0qr992YYEXHj6rtwz7lcvijaQzBGAPjQzG0xxoAoAMV4LRohkDIBJvB6mFOSJkimYjPa8n4OAAQIG0VHs6Hpno23PtZNGU-NLjr7brshbqt42odVY_tFctx0dtE2Q5xpl4es46zufWec34k2Kl17s_ud29HD2el9dpFc355fZsfXSUGEwInQRsoCC5lLzIkGSFNdYp3mzNBcGiqrSnImJE0xUCNywUpUloSiFDNZQU62o4PV3VfXvvXGd2phfWHqWjem7b1CXDDEKeYooPt_0HnbuyZ8FyjGpSAIy0CNV1ThWu-dqdSrswvtBoVALQtVy0LVT6FBkCvhw9Zm-IdWp1eX2W83Wbk2lPb542r3ohgnnKqnm3N1N3k8mZLZRHHyBRD9h7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767983129</pqid></control><display><type>article</type><title>Synthesis and Reactivity of Ruthenium-Antimony Carbonyl Clusters</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Ying-Zhou ; Ganguly, Rakesh ; Leong, Weng Kee ; Liu, Yang</creator><creatorcontrib>Li, Ying-Zhou ; Ganguly, Rakesh ; Leong, Weng Kee ; Liu, Yang</creatorcontrib><description>The reaction of Na[HRu3(CO)11] (2) with SbPh2Cl in dry tetrahydrofuran (THF) afforded the cluster Ru3(CO)10(μ‐H)(μ‐SbPh2) (3); in dry dichloromethane (DCM), the six‐membered ring Ru6(CO)20(μ‐H)2(μ‐SbPh2)2 (4) was obtained instead. The trimethylamine N‐oxide (TMNO) activated reaction of Ru3(CO)12 (1) with distibine Sb2Ph4 produced Ru3(CO)10(μ‐SbPh2)2 (6) through an Sb–Sb bond oxidative addition. Cluster 6 is fluxional through Ru–Ru bond isomerization. In contrast, its group 15 monosubstituted derivatives Ru3(CO)9(μ‐SbPh2)2(L) (7, L = phosphane, arsine or stibine) or the disubstituted derivatives Ru3(CO)8(μ‐SbPh2)2(L)2 (8) did not exhibit such fluxionality. Instead, isomerization through a turnstile mechanism involving the group 15 ligand occurred. The treatment of 6 with SbPh2Cl afforded the fused‐ring clusters Ru3(CO)9(μ‐SbPh2)3(Cl) (9) and Ru3(CO)8(μ‐SbPh2)3(Cl)(SbPh2CH2Cl) (10). A series of ruthenium–antimony carbonyl clusters are prepared by the oxidative addition of Sb–Cl or Sb–Sb bonds to lightly stabilized ruthenium carbonyl clusters. Their solid‐ and solution‐state structures are studied in detail by X‐ray crystallography and variable‐temperature multinuclear NMR experiments, respectively.</description><identifier>ISSN: 1434-1948</identifier><identifier>EISSN: 1099-0682</identifier><identifier>DOI: 10.1002/ejic.201500522</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Antimony ; Bonding ; Carbonyl ligands ; Carbonyls ; Cluster compounds ; Clusters ; Derivatives ; Drying ; Isomerization ; Ligands ; Metal-metal bonds ; Ruthenium</subject><ispartof>European journal of inorganic chemistry, 2015-08, Vol.2015 (23), p.3861-3872</ispartof><rights>Copyright © 2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3882-8ae99c289b9273a0044ad2a4b6e5b9e59ff9768954205e8b86d1dd3514269f0b3</citedby><cites>FETCH-LOGICAL-c3882-8ae99c289b9273a0044ad2a4b6e5b9e59ff9768954205e8b86d1dd3514269f0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fejic.201500522$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fejic.201500522$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Li, Ying-Zhou</creatorcontrib><creatorcontrib>Ganguly, Rakesh</creatorcontrib><creatorcontrib>Leong, Weng Kee</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><title>Synthesis and Reactivity of Ruthenium-Antimony Carbonyl Clusters</title><title>European journal of inorganic chemistry</title><addtitle>Eur. J. Inorg. Chem</addtitle><description>The reaction of Na[HRu3(CO)11] (2) with SbPh2Cl in dry tetrahydrofuran (THF) afforded the cluster Ru3(CO)10(μ‐H)(μ‐SbPh2) (3); in dry dichloromethane (DCM), the six‐membered ring Ru6(CO)20(μ‐H)2(μ‐SbPh2)2 (4) was obtained instead. The trimethylamine N‐oxide (TMNO) activated reaction of Ru3(CO)12 (1) with distibine Sb2Ph4 produced Ru3(CO)10(μ‐SbPh2)2 (6) through an Sb–Sb bond oxidative addition. Cluster 6 is fluxional through Ru–Ru bond isomerization. In contrast, its group 15 monosubstituted derivatives Ru3(CO)9(μ‐SbPh2)2(L) (7, L = phosphane, arsine or stibine) or the disubstituted derivatives Ru3(CO)8(μ‐SbPh2)2(L)2 (8) did not exhibit such fluxionality. Instead, isomerization through a turnstile mechanism involving the group 15 ligand occurred. The treatment of 6 with SbPh2Cl afforded the fused‐ring clusters Ru3(CO)9(μ‐SbPh2)3(Cl) (9) and Ru3(CO)8(μ‐SbPh2)3(Cl)(SbPh2CH2Cl) (10). A series of ruthenium–antimony carbonyl clusters are prepared by the oxidative addition of Sb–Cl or Sb–Sb bonds to lightly stabilized ruthenium carbonyl clusters. Their solid‐ and solution‐state structures are studied in detail by X‐ray crystallography and variable‐temperature multinuclear NMR experiments, respectively.</description><subject>Antimony</subject><subject>Bonding</subject><subject>Carbonyl ligands</subject><subject>Carbonyls</subject><subject>Cluster compounds</subject><subject>Clusters</subject><subject>Derivatives</subject><subject>Drying</subject><subject>Isomerization</subject><subject>Ligands</subject><subject>Metal-metal bonds</subject><subject>Ruthenium</subject><issn>1434-1948</issn><issn>1099-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAURosoOD62rgtu3HS8SZrXTi0-ER1nfCxD2qaYsdNq0qr992YYEXHj6rtwz7lcvijaQzBGAPjQzG0xxoAoAMV4LRohkDIBJvB6mFOSJkimYjPa8n4OAAQIG0VHs6Hpno23PtZNGU-NLjr7brshbqt42odVY_tFctx0dtE2Q5xpl4es46zufWec34k2Kl17s_ud29HD2el9dpFc355fZsfXSUGEwInQRsoCC5lLzIkGSFNdYp3mzNBcGiqrSnImJE0xUCNywUpUloSiFDNZQU62o4PV3VfXvvXGd2phfWHqWjem7b1CXDDEKeYooPt_0HnbuyZ8FyjGpSAIy0CNV1ThWu-dqdSrswvtBoVALQtVy0LVT6FBkCvhw9Zm-IdWp1eX2W83Wbk2lPb542r3ohgnnKqnm3N1N3k8mZLZRHHyBRD9h7g</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Li, Ying-Zhou</creator><creator>Ganguly, Rakesh</creator><creator>Leong, Weng Kee</creator><creator>Liu, Yang</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201508</creationdate><title>Synthesis and Reactivity of Ruthenium-Antimony Carbonyl Clusters</title><author>Li, Ying-Zhou ; Ganguly, Rakesh ; Leong, Weng Kee ; Liu, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3882-8ae99c289b9273a0044ad2a4b6e5b9e59ff9768954205e8b86d1dd3514269f0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Antimony</topic><topic>Bonding</topic><topic>Carbonyl ligands</topic><topic>Carbonyls</topic><topic>Cluster compounds</topic><topic>Clusters</topic><topic>Derivatives</topic><topic>Drying</topic><topic>Isomerization</topic><topic>Ligands</topic><topic>Metal-metal bonds</topic><topic>Ruthenium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ying-Zhou</creatorcontrib><creatorcontrib>Ganguly, Rakesh</creatorcontrib><creatorcontrib>Leong, Weng Kee</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>European journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ying-Zhou</au><au>Ganguly, Rakesh</au><au>Leong, Weng Kee</au><au>Liu, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and Reactivity of Ruthenium-Antimony Carbonyl Clusters</atitle><jtitle>European journal of inorganic chemistry</jtitle><addtitle>Eur. J. Inorg. Chem</addtitle><date>2015-08</date><risdate>2015</risdate><volume>2015</volume><issue>23</issue><spage>3861</spage><epage>3872</epage><pages>3861-3872</pages><issn>1434-1948</issn><eissn>1099-0682</eissn><abstract>The reaction of Na[HRu3(CO)11] (2) with SbPh2Cl in dry tetrahydrofuran (THF) afforded the cluster Ru3(CO)10(μ‐H)(μ‐SbPh2) (3); in dry dichloromethane (DCM), the six‐membered ring Ru6(CO)20(μ‐H)2(μ‐SbPh2)2 (4) was obtained instead. The trimethylamine N‐oxide (TMNO) activated reaction of Ru3(CO)12 (1) with distibine Sb2Ph4 produced Ru3(CO)10(μ‐SbPh2)2 (6) through an Sb–Sb bond oxidative addition. Cluster 6 is fluxional through Ru–Ru bond isomerization. In contrast, its group 15 monosubstituted derivatives Ru3(CO)9(μ‐SbPh2)2(L) (7, L = phosphane, arsine or stibine) or the disubstituted derivatives Ru3(CO)8(μ‐SbPh2)2(L)2 (8) did not exhibit such fluxionality. Instead, isomerization through a turnstile mechanism involving the group 15 ligand occurred. The treatment of 6 with SbPh2Cl afforded the fused‐ring clusters Ru3(CO)9(μ‐SbPh2)3(Cl) (9) and Ru3(CO)8(μ‐SbPh2)3(Cl)(SbPh2CH2Cl) (10). A series of ruthenium–antimony carbonyl clusters are prepared by the oxidative addition of Sb–Cl or Sb–Sb bonds to lightly stabilized ruthenium carbonyl clusters. Their solid‐ and solution‐state structures are studied in detail by X‐ray crystallography and variable‐temperature multinuclear NMR experiments, respectively.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/ejic.201500522</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1434-1948
ispartof European journal of inorganic chemistry, 2015-08, Vol.2015 (23), p.3861-3872
issn 1434-1948
1099-0682
language eng
recordid cdi_proquest_miscellaneous_1786175271
source Wiley Online Library Journals Frontfile Complete
subjects Antimony
Bonding
Carbonyl ligands
Carbonyls
Cluster compounds
Clusters
Derivatives
Drying
Isomerization
Ligands
Metal-metal bonds
Ruthenium
title Synthesis and Reactivity of Ruthenium-Antimony Carbonyl Clusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20Reactivity%20of%20Ruthenium-Antimony%20Carbonyl%20Clusters&rft.jtitle=European%20journal%20of%20inorganic%20chemistry&rft.au=Li,%20Ying-Zhou&rft.date=2015-08&rft.volume=2015&rft.issue=23&rft.spage=3861&rft.epage=3872&rft.pages=3861-3872&rft.issn=1434-1948&rft.eissn=1099-0682&rft_id=info:doi/10.1002/ejic.201500522&rft_dat=%3Cproquest_cross%3E3963512401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1767983129&rft_id=info:pmid/&rfr_iscdi=true