Gaussian noise image restoration using local statistics

We propose an efficient noise estimation-based method in removing Gaussian noise using local statistics. A proposed detector flexibly classifies the serious and mild noisy pixels prior to applying the strong and weak filters respectively.

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nguyen, Tuan-Anh, Hong, Min-Cheol
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150
container_issue
container_start_page 149
container_title
container_volume
creator Nguyen, Tuan-Anh
Hong, Min-Cheol
description We propose an efficient noise estimation-based method in removing Gaussian noise using local statistics. A proposed detector flexibly classifies the serious and mild noisy pixels prior to applying the strong and weak filters respectively.
doi_str_mv 10.1109/ICCE.2013.6486835
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786174793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6486835</ieee_id><sourcerecordid>1786174793</sourcerecordid><originalsourceid>FETCH-LOGICAL-i123t-8e68c0ec80f92e3d4e5fc943e8bd09be86118a46bdb1afbaa9c16eda378ee7c93</originalsourceid><addsrcrecordid>eNpFkE9Lw0AQxdd_YFv9AOIlRy-pO9nN7s5RQq2Fghc9h81mUlbSpGaSg9_egAVPD-b9eMx7QjyAXANIfN4VxWadSVBro51xKr8QS9DGKlAmw0uxyCB3qZYSrv4NkNdnQyHqW7Fk_poJxBwXwm79xBx9l3R9ZEri0R8oGYjHfvBj7Ltk4tgdkrYPvk14nG88xsB34qbxLdP9WVfi83XzUbyl-_ftrnjZpxEyNaaOjAuSgpMNZqRqTXkTUCtyVS2xImcAnNemqivwTeU9BjBUe2UdkQ2oVuLpL_c09N_T_FZ5jByobX1H_cQl2DnCaotqRh__0EhE5WmYqww_5Xko9QsOeVkk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1786174793</pqid></control><display><type>conference_proceeding</type><title>Gaussian noise image restoration using local statistics</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nguyen, Tuan-Anh ; Hong, Min-Cheol</creator><creatorcontrib>Nguyen, Tuan-Anh ; Hong, Min-Cheol</creatorcontrib><description>We propose an efficient noise estimation-based method in removing Gaussian noise using local statistics. A proposed detector flexibly classifies the serious and mild noisy pixels prior to applying the strong and weak filters respectively.</description><identifier>ISSN: 2158-3994</identifier><identifier>ISBN: 1467313610</identifier><identifier>ISBN: 9781467313612</identifier><identifier>EISSN: 2158-4001</identifier><identifier>EISBN: 1467313629</identifier><identifier>EISBN: 9781467313636</identifier><identifier>EISBN: 1467313637</identifier><identifier>EISBN: 9781467313629</identifier><identifier>DOI: 10.1109/ICCE.2013.6486835</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification ; Conferences ; Consumption ; Detectors ; Electronics ; Gaussian ; Gaussian noise ; Information filtering ; Noise ; Noise measurement ; Pixels ; PSNR ; Statistics</subject><ispartof>2013 IEEE International Conference on Consumer Electronics (ICCE), 2013, p.149-150</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6486835$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,2052,27901,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6486835$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nguyen, Tuan-Anh</creatorcontrib><creatorcontrib>Hong, Min-Cheol</creatorcontrib><title>Gaussian noise image restoration using local statistics</title><title>2013 IEEE International Conference on Consumer Electronics (ICCE)</title><addtitle>ICCE</addtitle><description>We propose an efficient noise estimation-based method in removing Gaussian noise using local statistics. A proposed detector flexibly classifies the serious and mild noisy pixels prior to applying the strong and weak filters respectively.</description><subject>Classification</subject><subject>Conferences</subject><subject>Consumption</subject><subject>Detectors</subject><subject>Electronics</subject><subject>Gaussian</subject><subject>Gaussian noise</subject><subject>Information filtering</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Pixels</subject><subject>PSNR</subject><subject>Statistics</subject><issn>2158-3994</issn><issn>2158-4001</issn><isbn>1467313610</isbn><isbn>9781467313612</isbn><isbn>1467313629</isbn><isbn>9781467313636</isbn><isbn>1467313637</isbn><isbn>9781467313629</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkE9Lw0AQxdd_YFv9AOIlRy-pO9nN7s5RQq2Fghc9h81mUlbSpGaSg9_egAVPD-b9eMx7QjyAXANIfN4VxWadSVBro51xKr8QS9DGKlAmw0uxyCB3qZYSrv4NkNdnQyHqW7Fk_poJxBwXwm79xBx9l3R9ZEri0R8oGYjHfvBj7Ltk4tgdkrYPvk14nG88xsB34qbxLdP9WVfi83XzUbyl-_ftrnjZpxEyNaaOjAuSgpMNZqRqTXkTUCtyVS2xImcAnNemqivwTeU9BjBUe2UdkQ2oVuLpL_c09N_T_FZ5jByobX1H_cQl2DnCaotqRh__0EhE5WmYqww_5Xko9QsOeVkk</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Nguyen, Tuan-Anh</creator><creator>Hong, Min-Cheol</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201301</creationdate><title>Gaussian noise image restoration using local statistics</title><author>Nguyen, Tuan-Anh ; Hong, Min-Cheol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i123t-8e68c0ec80f92e3d4e5fc943e8bd09be86118a46bdb1afbaa9c16eda378ee7c93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Classification</topic><topic>Conferences</topic><topic>Consumption</topic><topic>Detectors</topic><topic>Electronics</topic><topic>Gaussian</topic><topic>Gaussian noise</topic><topic>Information filtering</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Pixels</topic><topic>PSNR</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Tuan-Anh</creatorcontrib><creatorcontrib>Hong, Min-Cheol</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nguyen, Tuan-Anh</au><au>Hong, Min-Cheol</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Gaussian noise image restoration using local statistics</atitle><btitle>2013 IEEE International Conference on Consumer Electronics (ICCE)</btitle><stitle>ICCE</stitle><date>2013-01</date><risdate>2013</risdate><spage>149</spage><epage>150</epage><pages>149-150</pages><issn>2158-3994</issn><eissn>2158-4001</eissn><isbn>1467313610</isbn><isbn>9781467313612</isbn><eisbn>1467313629</eisbn><eisbn>9781467313636</eisbn><eisbn>1467313637</eisbn><eisbn>9781467313629</eisbn><abstract>We propose an efficient noise estimation-based method in removing Gaussian noise using local statistics. A proposed detector flexibly classifies the serious and mild noisy pixels prior to applying the strong and weak filters respectively.</abstract><pub>IEEE</pub><doi>10.1109/ICCE.2013.6486835</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2158-3994
ispartof 2013 IEEE International Conference on Consumer Electronics (ICCE), 2013, p.149-150
issn 2158-3994
2158-4001
language eng
recordid cdi_proquest_miscellaneous_1786174793
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Classification
Conferences
Consumption
Detectors
Electronics
Gaussian
Gaussian noise
Information filtering
Noise
Noise measurement
Pixels
PSNR
Statistics
title Gaussian noise image restoration using local statistics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A19%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Gaussian%20noise%20image%20restoration%20using%20local%20statistics&rft.btitle=2013%20IEEE%20International%20Conference%20on%20Consumer%20Electronics%20(ICCE)&rft.au=Nguyen,%20Tuan-Anh&rft.date=2013-01&rft.spage=149&rft.epage=150&rft.pages=149-150&rft.issn=2158-3994&rft.eissn=2158-4001&rft.isbn=1467313610&rft.isbn_list=9781467313612&rft_id=info:doi/10.1109/ICCE.2013.6486835&rft_dat=%3Cproquest_6IE%3E1786174793%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467313629&rft.eisbn_list=9781467313636&rft.eisbn_list=1467313637&rft.eisbn_list=9781467313629&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786174793&rft_id=info:pmid/&rft_ieee_id=6486835&rfr_iscdi=true