Bayesian estimation of rainfall intensity–duration–frequency relationships
•Estimation of IDF curves with management of uncertainty.•Application of recent Baysesian techniques for composite likelihoods.•Comparison with classical IDF point estimations. Rainfall intensity–duration–frequency (IDF) curves are one of the most commonly used tools in water resources engineering....
Gespeichert in:
Veröffentlicht in: | Journal of hydrology (Amsterdam) 2015-10, Vol.529, p.1451-1463 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1463 |
---|---|
container_issue | |
container_start_page | 1451 |
container_title | Journal of hydrology (Amsterdam) |
container_volume | 529 |
creator | Van de Vyver, H. |
description | •Estimation of IDF curves with management of uncertainty.•Application of recent Baysesian techniques for composite likelihoods.•Comparison with classical IDF point estimations.
Rainfall intensity–duration–frequency (IDF) curves are one of the most commonly used tools in water resources engineering. They give an idea of how return levels of extreme rainfall intensities vary with duration over a range of return periods. It is assumed that the annual maximum intensity follows the generalised extreme value (GEV) distribution. Conventional methods of estimating IDF relationships do not provide estimates of uncertainty. We propose a Bayesian framework for handling uncertainties in IDF models. Firstly, we collect annual maximum intensity data over a relevant range of rainfall durations. Secondly, we define an approximate likelihood, the “independence” likelihood, in which the correlations have been ignored between maximum intensity data of different durations. Finally, we apply Bayesian inference to obtain the adjusted posterior, which accounts for likelihood misspecification. A comparison with earlier methods, without any adjustment amongst others, shows that the adjusted posteriors are considerably wider. |
doi_str_mv | 10.1016/j.jhydrol.2015.08.036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786174483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022169415006083</els_id><sourcerecordid>1786174483</sourcerecordid><originalsourceid>FETCH-LOGICAL-a468t-4d6366d8f1f72114ce18d4afbeb555e339e01e62aa9b7c5d8d3b34b8d75479d13</originalsourceid><addsrcrecordid>eNqNkM1KxDAQx4MouK4-gtCjl9ZMkybpSXTxCxa96DmkzZTN0m3XpCv05jv4hj6J2Y-7DgwzDP__MPMj5BJoBhTE9TJbLkbr-zbLKRQZVRll4ohMQMkyzSWVx2RCaZ6nIEp-Ss5CWNIYjPEJebkzIwZnugTD4FZmcH2X9E3ijesa07aJ6wbsghvGn69vu_E7QWwbjx8b7Oox8djuhmHh1uGcnERXwItDnZL3h_u32VM6f318nt3OU8OFGlJuBRPCqgYamQPwGkFZbpoKq6IokLESKaDIjSkrWRdWWVYxXikrCy5LC2xKrvZ7176Pd4RBr1yosW1Nh_0maJBKgORcsX9IRc4EK2NOSbGX1r4PwWOj1z4y8aMGqreo9VIfUOstak2Vpjvfzd6H8eVPh16H2kU4aJ3HetC2d39s-AVWro3v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762363936</pqid></control><display><type>article</type><title>Bayesian estimation of rainfall intensity–duration–frequency relationships</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Van de Vyver, H.</creator><creatorcontrib>Van de Vyver, H.</creatorcontrib><description>•Estimation of IDF curves with management of uncertainty.•Application of recent Baysesian techniques for composite likelihoods.•Comparison with classical IDF point estimations.
Rainfall intensity–duration–frequency (IDF) curves are one of the most commonly used tools in water resources engineering. They give an idea of how return levels of extreme rainfall intensities vary with duration over a range of return periods. It is assumed that the annual maximum intensity follows the generalised extreme value (GEV) distribution. Conventional methods of estimating IDF relationships do not provide estimates of uncertainty. We propose a Bayesian framework for handling uncertainties in IDF models. Firstly, we collect annual maximum intensity data over a relevant range of rainfall durations. Secondly, we define an approximate likelihood, the “independence” likelihood, in which the correlations have been ignored between maximum intensity data of different durations. Finally, we apply Bayesian inference to obtain the adjusted posterior, which accounts for likelihood misspecification. A comparison with earlier methods, without any adjustment amongst others, shows that the adjusted posteriors are considerably wider.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/j.jhydrol.2015.08.036</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Adjustment ; Approximation ; Bayesian analysis ; Bayesian estimation ; Composite likelihood ; Correlation ; Extreme value distributions ; Extreme values ; IDF curves ; Rainfall ; Uncertainty ; Water resources</subject><ispartof>Journal of hydrology (Amsterdam), 2015-10, Vol.529, p.1451-1463</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a468t-4d6366d8f1f72114ce18d4afbeb555e339e01e62aa9b7c5d8d3b34b8d75479d13</citedby><cites>FETCH-LOGICAL-a468t-4d6366d8f1f72114ce18d4afbeb555e339e01e62aa9b7c5d8d3b34b8d75479d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhydrol.2015.08.036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Van de Vyver, H.</creatorcontrib><title>Bayesian estimation of rainfall intensity–duration–frequency relationships</title><title>Journal of hydrology (Amsterdam)</title><description>•Estimation of IDF curves with management of uncertainty.•Application of recent Baysesian techniques for composite likelihoods.•Comparison with classical IDF point estimations.
Rainfall intensity–duration–frequency (IDF) curves are one of the most commonly used tools in water resources engineering. They give an idea of how return levels of extreme rainfall intensities vary with duration over a range of return periods. It is assumed that the annual maximum intensity follows the generalised extreme value (GEV) distribution. Conventional methods of estimating IDF relationships do not provide estimates of uncertainty. We propose a Bayesian framework for handling uncertainties in IDF models. Firstly, we collect annual maximum intensity data over a relevant range of rainfall durations. Secondly, we define an approximate likelihood, the “independence” likelihood, in which the correlations have been ignored between maximum intensity data of different durations. Finally, we apply Bayesian inference to obtain the adjusted posterior, which accounts for likelihood misspecification. A comparison with earlier methods, without any adjustment amongst others, shows that the adjusted posteriors are considerably wider.</description><subject>Adjustment</subject><subject>Approximation</subject><subject>Bayesian analysis</subject><subject>Bayesian estimation</subject><subject>Composite likelihood</subject><subject>Correlation</subject><subject>Extreme value distributions</subject><subject>Extreme values</subject><subject>IDF curves</subject><subject>Rainfall</subject><subject>Uncertainty</subject><subject>Water resources</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkM1KxDAQx4MouK4-gtCjl9ZMkybpSXTxCxa96DmkzZTN0m3XpCv05jv4hj6J2Y-7DgwzDP__MPMj5BJoBhTE9TJbLkbr-zbLKRQZVRll4ohMQMkyzSWVx2RCaZ6nIEp-Ss5CWNIYjPEJebkzIwZnugTD4FZmcH2X9E3ijesa07aJ6wbsghvGn69vu_E7QWwbjx8b7Oox8djuhmHh1uGcnERXwItDnZL3h_u32VM6f318nt3OU8OFGlJuBRPCqgYamQPwGkFZbpoKq6IokLESKaDIjSkrWRdWWVYxXikrCy5LC2xKrvZ7176Pd4RBr1yosW1Nh_0maJBKgORcsX9IRc4EK2NOSbGX1r4PwWOj1z4y8aMGqreo9VIfUOstak2Vpjvfzd6H8eVPh16H2kU4aJ3HetC2d39s-AVWro3v</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Van de Vyver, H.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20151001</creationdate><title>Bayesian estimation of rainfall intensity–duration–frequency relationships</title><author>Van de Vyver, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a468t-4d6366d8f1f72114ce18d4afbeb555e339e01e62aa9b7c5d8d3b34b8d75479d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adjustment</topic><topic>Approximation</topic><topic>Bayesian analysis</topic><topic>Bayesian estimation</topic><topic>Composite likelihood</topic><topic>Correlation</topic><topic>Extreme value distributions</topic><topic>Extreme values</topic><topic>IDF curves</topic><topic>Rainfall</topic><topic>Uncertainty</topic><topic>Water resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van de Vyver, H.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van de Vyver, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian estimation of rainfall intensity–duration–frequency relationships</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>529</volume><spage>1451</spage><epage>1463</epage><pages>1451-1463</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><abstract>•Estimation of IDF curves with management of uncertainty.•Application of recent Baysesian techniques for composite likelihoods.•Comparison with classical IDF point estimations.
Rainfall intensity–duration–frequency (IDF) curves are one of the most commonly used tools in water resources engineering. They give an idea of how return levels of extreme rainfall intensities vary with duration over a range of return periods. It is assumed that the annual maximum intensity follows the generalised extreme value (GEV) distribution. Conventional methods of estimating IDF relationships do not provide estimates of uncertainty. We propose a Bayesian framework for handling uncertainties in IDF models. Firstly, we collect annual maximum intensity data over a relevant range of rainfall durations. Secondly, we define an approximate likelihood, the “independence” likelihood, in which the correlations have been ignored between maximum intensity data of different durations. Finally, we apply Bayesian inference to obtain the adjusted posterior, which accounts for likelihood misspecification. A comparison with earlier methods, without any adjustment amongst others, shows that the adjusted posteriors are considerably wider.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2015.08.036</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1694 |
ispartof | Journal of hydrology (Amsterdam), 2015-10, Vol.529, p.1451-1463 |
issn | 0022-1694 1879-2707 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786174483 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Adjustment Approximation Bayesian analysis Bayesian estimation Composite likelihood Correlation Extreme value distributions Extreme values IDF curves Rainfall Uncertainty Water resources |
title | Bayesian estimation of rainfall intensity–duration–frequency relationships |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20estimation%20of%20rainfall%20intensity%E2%80%93duration%E2%80%93frequency%20relationships&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Van%20de%20Vyver,%20H.&rft.date=2015-10-01&rft.volume=529&rft.spage=1451&rft.epage=1463&rft.pages=1451-1463&rft.issn=0022-1694&rft.eissn=1879-2707&rft_id=info:doi/10.1016/j.jhydrol.2015.08.036&rft_dat=%3Cproquest_cross%3E1786174483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762363936&rft_id=info:pmid/&rft_els_id=S0022169415006083&rfr_iscdi=true |