The far-infrared/radio correlation and radio spectral index of galaxies in the SFR–M∗ plane up to z~2
We study the evolution of the radio spectral index and far-infrared/radio correlation (FRC) across the star-formation rate – stellar masse (i.e. SFR–M∗) plane up to z ~ 2. We start from a stellar-mass-selected sample of galaxies with reliable SFR and redshift estimates. We then grid the SFR–M∗ plane...
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2015-01, Vol.573, p.A45 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | A45 |
container_title | Astronomy and astrophysics (Berlin) |
container_volume | 573 |
creator | Magnelli, B. Ivison, R. J. Lutz, D. Valtchanov, I. Farrah, D. Berta, S. Bertoldi, F. Bock, J. Cooray, A. Ibar, E. Karim, A. Le Floc’h, E. Nordon, R. Oliver, S. J. Page, M. Popesso, P. Pozzi, F. Rigopoulou, D. Riguccini, L. Rodighiero, G. Rosario, D. Roseboom, I. Wang, L. Wuyts, S. |
description | We study the evolution of the radio spectral index and far-infrared/radio correlation (FRC) across the star-formation rate – stellar masse (i.e. SFR–M∗) plane up to z ~ 2. We start from a stellar-mass-selected sample of galaxies with reliable SFR and redshift estimates. We then grid the SFR–M∗ plane in several redshift ranges and measure the infrared luminosity, radio luminosity, radio spectral index, and ultimately the FRC index (i.e. qFIR) of each SFR–M∗–z bin. The infrared luminosities of our SFR–M∗–z bins are estimated using their stacked far-infrared flux densities inferred from observations obtained with the Herschel Space Observatory. Their radio luminosities and radio spectral indices (i.e. α, where Sν ∝ ν−α) are estimated using their stacked 1.4 GHz and 610 MHz flux densities from the Very Large Array and Giant Metre-wave Radio Telescope, respectively. Our far-infrared and radio observations include the most widely studied blank extragalactic fields – GOODS-N, GOODS-S, ECDFS, and COSMOS – covering a total sky area of ~2.0 deg2. Using this methodology, we constrain the radio spectral index and FRC index of star-forming galaxies with M∗ > 1010 M⊙ and 0 |
doi_str_mv | 10.1051/0004-6361/201424937 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786172863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786172863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-3994cb0c637e1aea32e7d88d50d1736a38701cb99822fbb0e05caa73c449f5a33</originalsourceid><addsrcrecordid>eNqNkb1u3DAQhAnDBnK28wRpWKZRjuRSJFXGh_gHuCCB_5KOWFGUTVuWFFIHXFwELt2nyPv5SSzhgqtdLXbxzWAxQ8gHzj5xlvM5Y0xmChSfC8alkAXoHTLjEkTGtFS7ZLYl3pH9lO7GVXADMxIubz2tMWahrSNGX80jVqGjrovRNziErqXYVnRzTb13Q8SGhrbya9rV9AYbXAefxgsdRquL4_OXp79fX57_0b7B1tNVT4eOPv4Rh2Svxib59__nAbk6_nK5OM2W307OFp-XmYMchgyKQrqSOQXac_QIwuvKmCpnFdegEIxm3JVFYYSoy5J5ljtEDU7Kos4R4IB83Pj2sfu18mmwDyE530zfdKtkuTaKa2HUW1CVFzkDzUYUNqiLXUrR17aP4QHjb8uZnTqwU8J2SthuOxhV2UYV0uDXWwnGe6s06Nwa9sPK5eL6-_XRT3sEr5I8iVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765950370</pqid></control><display><type>article</type><title>The far-infrared/radio correlation and radio spectral index of galaxies in the SFR–M∗ plane up to z~2</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Magnelli, B. ; Ivison, R. J. ; Lutz, D. ; Valtchanov, I. ; Farrah, D. ; Berta, S. ; Bertoldi, F. ; Bock, J. ; Cooray, A. ; Ibar, E. ; Karim, A. ; Le Floc’h, E. ; Nordon, R. ; Oliver, S. J. ; Page, M. ; Popesso, P. ; Pozzi, F. ; Rigopoulou, D. ; Riguccini, L. ; Rodighiero, G. ; Rosario, D. ; Roseboom, I. ; Wang, L. ; Wuyts, S.</creator><creatorcontrib>Magnelli, B. ; Ivison, R. J. ; Lutz, D. ; Valtchanov, I. ; Farrah, D. ; Berta, S. ; Bertoldi, F. ; Bock, J. ; Cooray, A. ; Ibar, E. ; Karim, A. ; Le Floc’h, E. ; Nordon, R. ; Oliver, S. J. ; Page, M. ; Popesso, P. ; Pozzi, F. ; Rigopoulou, D. ; Riguccini, L. ; Rodighiero, G. ; Rosario, D. ; Roseboom, I. ; Wang, L. ; Wuyts, S.</creatorcontrib><description>We study the evolution of the radio spectral index and far-infrared/radio correlation (FRC) across the star-formation rate – stellar masse (i.e. SFR–M∗) plane up to z ~ 2. We start from a stellar-mass-selected sample of galaxies with reliable SFR and redshift estimates. We then grid the SFR–M∗ plane in several redshift ranges and measure the infrared luminosity, radio luminosity, radio spectral index, and ultimately the FRC index (i.e. qFIR) of each SFR–M∗–z bin. The infrared luminosities of our SFR–M∗–z bins are estimated using their stacked far-infrared flux densities inferred from observations obtained with the Herschel Space Observatory. Their radio luminosities and radio spectral indices (i.e. α, where Sν ∝ ν−α) are estimated using their stacked 1.4 GHz and 610 MHz flux densities from the Very Large Array and Giant Metre-wave Radio Telescope, respectively. Our far-infrared and radio observations include the most widely studied blank extragalactic fields – GOODS-N, GOODS-S, ECDFS, and COSMOS – covering a total sky area of ~2.0 deg2. Using this methodology, we constrain the radio spectral index and FRC index of star-forming galaxies with M∗ > 1010 M⊙ and 0 <z< 2.3. We find that α1.4 GHz610 MHz does not evolve significantly with redshift or with the distance of a galaxy with respect to the main sequence (MS) of the SFR–M∗ plane (i.e. Δlog (SSFR)MS = log [ SSFR(galaxy) /SSFRMS(M∗,z) ]). Instead, star-forming galaxies have a radio spectral index consistent with a canonical value of 0.8, which suggests that their radio spectra are dominated by non-thermal optically thin synchrotron emission. We find that the FRC index, qFIR,displays a moderate but statistically significant redshift evolution as qFIR(z) = (2.35 ± 0.08) × (1 + z)−0.12 ± 0.04, consistent with some previous literature. Finally, we find no significant correlation between qFIR and Δlog (SSFR)MS, though a weak positive trend, as observed in one of our redshift bins (i.e. Δ [ qFIR ]/Δ [ Δlog (SSFR)MS ] = 0.22 ± 0.07 at 0.5 <z< 0.8), cannot be firmly ruled out using our dataset.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/201424937</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>Flux ; Flux density ; Galaxies ; galaxies: evolution ; galaxies: formation ; galaxies: high-redshift ; galaxies: starburst ; infrared: galaxies ; Luminosity ; Planes ; Radio ; Red shift ; Spectra</subject><ispartof>Astronomy and astrophysics (Berlin), 2015-01, Vol.573, p.A45</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-3994cb0c637e1aea32e7d88d50d1736a38701cb99822fbb0e05caa73c449f5a33</citedby><cites>FETCH-LOGICAL-c353t-3994cb0c637e1aea32e7d88d50d1736a38701cb99822fbb0e05caa73c449f5a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3727,27924,27925</link.rule.ids></links><search><creatorcontrib>Magnelli, B.</creatorcontrib><creatorcontrib>Ivison, R. J.</creatorcontrib><creatorcontrib>Lutz, D.</creatorcontrib><creatorcontrib>Valtchanov, I.</creatorcontrib><creatorcontrib>Farrah, D.</creatorcontrib><creatorcontrib>Berta, S.</creatorcontrib><creatorcontrib>Bertoldi, F.</creatorcontrib><creatorcontrib>Bock, J.</creatorcontrib><creatorcontrib>Cooray, A.</creatorcontrib><creatorcontrib>Ibar, E.</creatorcontrib><creatorcontrib>Karim, A.</creatorcontrib><creatorcontrib>Le Floc’h, E.</creatorcontrib><creatorcontrib>Nordon, R.</creatorcontrib><creatorcontrib>Oliver, S. J.</creatorcontrib><creatorcontrib>Page, M.</creatorcontrib><creatorcontrib>Popesso, P.</creatorcontrib><creatorcontrib>Pozzi, F.</creatorcontrib><creatorcontrib>Rigopoulou, D.</creatorcontrib><creatorcontrib>Riguccini, L.</creatorcontrib><creatorcontrib>Rodighiero, G.</creatorcontrib><creatorcontrib>Rosario, D.</creatorcontrib><creatorcontrib>Roseboom, I.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Wuyts, S.</creatorcontrib><title>The far-infrared/radio correlation and radio spectral index of galaxies in the SFR–M∗ plane up to z~2</title><title>Astronomy and astrophysics (Berlin)</title><description>We study the evolution of the radio spectral index and far-infrared/radio correlation (FRC) across the star-formation rate – stellar masse (i.e. SFR–M∗) plane up to z ~ 2. We start from a stellar-mass-selected sample of galaxies with reliable SFR and redshift estimates. We then grid the SFR–M∗ plane in several redshift ranges and measure the infrared luminosity, radio luminosity, radio spectral index, and ultimately the FRC index (i.e. qFIR) of each SFR–M∗–z bin. The infrared luminosities of our SFR–M∗–z bins are estimated using their stacked far-infrared flux densities inferred from observations obtained with the Herschel Space Observatory. Their radio luminosities and radio spectral indices (i.e. α, where Sν ∝ ν−α) are estimated using their stacked 1.4 GHz and 610 MHz flux densities from the Very Large Array and Giant Metre-wave Radio Telescope, respectively. Our far-infrared and radio observations include the most widely studied blank extragalactic fields – GOODS-N, GOODS-S, ECDFS, and COSMOS – covering a total sky area of ~2.0 deg2. Using this methodology, we constrain the radio spectral index and FRC index of star-forming galaxies with M∗ > 1010 M⊙ and 0 <z< 2.3. We find that α1.4 GHz610 MHz does not evolve significantly with redshift or with the distance of a galaxy with respect to the main sequence (MS) of the SFR–M∗ plane (i.e. Δlog (SSFR)MS = log [ SSFR(galaxy) /SSFRMS(M∗,z) ]). Instead, star-forming galaxies have a radio spectral index consistent with a canonical value of 0.8, which suggests that their radio spectra are dominated by non-thermal optically thin synchrotron emission. We find that the FRC index, qFIR,displays a moderate but statistically significant redshift evolution as qFIR(z) = (2.35 ± 0.08) × (1 + z)−0.12 ± 0.04, consistent with some previous literature. Finally, we find no significant correlation between qFIR and Δlog (SSFR)MS, though a weak positive trend, as observed in one of our redshift bins (i.e. Δ [ qFIR ]/Δ [ Δlog (SSFR)MS ] = 0.22 ± 0.07 at 0.5 <z< 0.8), cannot be firmly ruled out using our dataset.</description><subject>Flux</subject><subject>Flux density</subject><subject>Galaxies</subject><subject>galaxies: evolution</subject><subject>galaxies: formation</subject><subject>galaxies: high-redshift</subject><subject>galaxies: starburst</subject><subject>infrared: galaxies</subject><subject>Luminosity</subject><subject>Planes</subject><subject>Radio</subject><subject>Red shift</subject><subject>Spectra</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkb1u3DAQhAnDBnK28wRpWKZRjuRSJFXGh_gHuCCB_5KOWFGUTVuWFFIHXFwELt2nyPv5SSzhgqtdLXbxzWAxQ8gHzj5xlvM5Y0xmChSfC8alkAXoHTLjEkTGtFS7ZLYl3pH9lO7GVXADMxIubz2tMWahrSNGX80jVqGjrovRNziErqXYVnRzTb13Q8SGhrbya9rV9AYbXAefxgsdRquL4_OXp79fX57_0b7B1tNVT4eOPv4Rh2Svxib59__nAbk6_nK5OM2W307OFp-XmYMchgyKQrqSOQXac_QIwuvKmCpnFdegEIxm3JVFYYSoy5J5ljtEDU7Kos4R4IB83Pj2sfu18mmwDyE530zfdKtkuTaKa2HUW1CVFzkDzUYUNqiLXUrR17aP4QHjb8uZnTqwU8J2SthuOxhV2UYV0uDXWwnGe6s06Nwa9sPK5eL6-_XRT3sEr5I8iVs</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Magnelli, B.</creator><creator>Ivison, R. J.</creator><creator>Lutz, D.</creator><creator>Valtchanov, I.</creator><creator>Farrah, D.</creator><creator>Berta, S.</creator><creator>Bertoldi, F.</creator><creator>Bock, J.</creator><creator>Cooray, A.</creator><creator>Ibar, E.</creator><creator>Karim, A.</creator><creator>Le Floc’h, E.</creator><creator>Nordon, R.</creator><creator>Oliver, S. J.</creator><creator>Page, M.</creator><creator>Popesso, P.</creator><creator>Pozzi, F.</creator><creator>Rigopoulou, D.</creator><creator>Riguccini, L.</creator><creator>Rodighiero, G.</creator><creator>Rosario, D.</creator><creator>Roseboom, I.</creator><creator>Wang, L.</creator><creator>Wuyts, S.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201501</creationdate><title>The far-infrared/radio correlation and radio spectral index of galaxies in the SFR–M∗ plane up to z~2</title><author>Magnelli, B. ; Ivison, R. J. ; Lutz, D. ; Valtchanov, I. ; Farrah, D. ; Berta, S. ; Bertoldi, F. ; Bock, J. ; Cooray, A. ; Ibar, E. ; Karim, A. ; Le Floc’h, E. ; Nordon, R. ; Oliver, S. J. ; Page, M. ; Popesso, P. ; Pozzi, F. ; Rigopoulou, D. ; Riguccini, L. ; Rodighiero, G. ; Rosario, D. ; Roseboom, I. ; Wang, L. ; Wuyts, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-3994cb0c637e1aea32e7d88d50d1736a38701cb99822fbb0e05caa73c449f5a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Flux</topic><topic>Flux density</topic><topic>Galaxies</topic><topic>galaxies: evolution</topic><topic>galaxies: formation</topic><topic>galaxies: high-redshift</topic><topic>galaxies: starburst</topic><topic>infrared: galaxies</topic><topic>Luminosity</topic><topic>Planes</topic><topic>Radio</topic><topic>Red shift</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Magnelli, B.</creatorcontrib><creatorcontrib>Ivison, R. J.</creatorcontrib><creatorcontrib>Lutz, D.</creatorcontrib><creatorcontrib>Valtchanov, I.</creatorcontrib><creatorcontrib>Farrah, D.</creatorcontrib><creatorcontrib>Berta, S.</creatorcontrib><creatorcontrib>Bertoldi, F.</creatorcontrib><creatorcontrib>Bock, J.</creatorcontrib><creatorcontrib>Cooray, A.</creatorcontrib><creatorcontrib>Ibar, E.</creatorcontrib><creatorcontrib>Karim, A.</creatorcontrib><creatorcontrib>Le Floc’h, E.</creatorcontrib><creatorcontrib>Nordon, R.</creatorcontrib><creatorcontrib>Oliver, S. J.</creatorcontrib><creatorcontrib>Page, M.</creatorcontrib><creatorcontrib>Popesso, P.</creatorcontrib><creatorcontrib>Pozzi, F.</creatorcontrib><creatorcontrib>Rigopoulou, D.</creatorcontrib><creatorcontrib>Riguccini, L.</creatorcontrib><creatorcontrib>Rodighiero, G.</creatorcontrib><creatorcontrib>Rosario, D.</creatorcontrib><creatorcontrib>Roseboom, I.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Wuyts, S.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Magnelli, B.</au><au>Ivison, R. J.</au><au>Lutz, D.</au><au>Valtchanov, I.</au><au>Farrah, D.</au><au>Berta, S.</au><au>Bertoldi, F.</au><au>Bock, J.</au><au>Cooray, A.</au><au>Ibar, E.</au><au>Karim, A.</au><au>Le Floc’h, E.</au><au>Nordon, R.</au><au>Oliver, S. J.</au><au>Page, M.</au><au>Popesso, P.</au><au>Pozzi, F.</au><au>Rigopoulou, D.</au><au>Riguccini, L.</au><au>Rodighiero, G.</au><au>Rosario, D.</au><au>Roseboom, I.</au><au>Wang, L.</au><au>Wuyts, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The far-infrared/radio correlation and radio spectral index of galaxies in the SFR–M∗ plane up to z~2</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2015-01</date><risdate>2015</risdate><volume>573</volume><spage>A45</spage><pages>A45-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>We study the evolution of the radio spectral index and far-infrared/radio correlation (FRC) across the star-formation rate – stellar masse (i.e. SFR–M∗) plane up to z ~ 2. We start from a stellar-mass-selected sample of galaxies with reliable SFR and redshift estimates. We then grid the SFR–M∗ plane in several redshift ranges and measure the infrared luminosity, radio luminosity, radio spectral index, and ultimately the FRC index (i.e. qFIR) of each SFR–M∗–z bin. The infrared luminosities of our SFR–M∗–z bins are estimated using their stacked far-infrared flux densities inferred from observations obtained with the Herschel Space Observatory. Their radio luminosities and radio spectral indices (i.e. α, where Sν ∝ ν−α) are estimated using their stacked 1.4 GHz and 610 MHz flux densities from the Very Large Array and Giant Metre-wave Radio Telescope, respectively. Our far-infrared and radio observations include the most widely studied blank extragalactic fields – GOODS-N, GOODS-S, ECDFS, and COSMOS – covering a total sky area of ~2.0 deg2. Using this methodology, we constrain the radio spectral index and FRC index of star-forming galaxies with M∗ > 1010 M⊙ and 0 <z< 2.3. We find that α1.4 GHz610 MHz does not evolve significantly with redshift or with the distance of a galaxy with respect to the main sequence (MS) of the SFR–M∗ plane (i.e. Δlog (SSFR)MS = log [ SSFR(galaxy) /SSFRMS(M∗,z) ]). Instead, star-forming galaxies have a radio spectral index consistent with a canonical value of 0.8, which suggests that their radio spectra are dominated by non-thermal optically thin synchrotron emission. We find that the FRC index, qFIR,displays a moderate but statistically significant redshift evolution as qFIR(z) = (2.35 ± 0.08) × (1 + z)−0.12 ± 0.04, consistent with some previous literature. Finally, we find no significant correlation between qFIR and Δlog (SSFR)MS, though a weak positive trend, as observed in one of our redshift bins (i.e. Δ [ qFIR ]/Δ [ Δlog (SSFR)MS ] = 0.22 ± 0.07 at 0.5 <z< 0.8), cannot be firmly ruled out using our dataset.</abstract><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201424937</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6361 |
ispartof | Astronomy and astrophysics (Berlin), 2015-01, Vol.573, p.A45 |
issn | 0004-6361 1432-0746 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786172863 |
source | Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; EZB-FREE-00999 freely available EZB journals |
subjects | Flux Flux density Galaxies galaxies: evolution galaxies: formation galaxies: high-redshift galaxies: starburst infrared: galaxies Luminosity Planes Radio Red shift Spectra |
title | The far-infrared/radio correlation and radio spectral index of galaxies in the SFR–M∗ plane up to z~2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A28%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20far-infrared/radio%20correlation%20and%20radio%20spectral%20index%20of%20galaxies%20in%20the%20SFR%E2%80%93M%E2%88%97%20plane%20up%20to%20z~2&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Magnelli,%20B.&rft.date=2015-01&rft.volume=573&rft.spage=A45&rft.pages=A45-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201424937&rft_dat=%3Cproquest_cross%3E1786172863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1765950370&rft_id=info:pmid/&rfr_iscdi=true |