The far-infrared/radio correlation and radio spectral index of galaxies in the SFR–M∗ plane up to z~2

We study the evolution of the radio spectral index and far-infrared/radio correlation (FRC) across the star-formation rate – stellar masse (i.e. SFR–M∗) plane up to z ~ 2. We start from a stellar-mass-selected sample of galaxies with reliable SFR and redshift estimates. We then grid the SFR–M∗ plane...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2015-01, Vol.573, p.A45
Hauptverfasser: Magnelli, B., Ivison, R. J., Lutz, D., Valtchanov, I., Farrah, D., Berta, S., Bertoldi, F., Bock, J., Cooray, A., Ibar, E., Karim, A., Le Floc’h, E., Nordon, R., Oliver, S. J., Page, M., Popesso, P., Pozzi, F., Rigopoulou, D., Riguccini, L., Rodighiero, G., Rosario, D., Roseboom, I., Wang, L., Wuyts, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page A45
container_title Astronomy and astrophysics (Berlin)
container_volume 573
creator Magnelli, B.
Ivison, R. J.
Lutz, D.
Valtchanov, I.
Farrah, D.
Berta, S.
Bertoldi, F.
Bock, J.
Cooray, A.
Ibar, E.
Karim, A.
Le Floc’h, E.
Nordon, R.
Oliver, S. J.
Page, M.
Popesso, P.
Pozzi, F.
Rigopoulou, D.
Riguccini, L.
Rodighiero, G.
Rosario, D.
Roseboom, I.
Wang, L.
Wuyts, S.
description We study the evolution of the radio spectral index and far-infrared/radio correlation (FRC) across the star-formation rate – stellar masse (i.e. SFR–M∗) plane up to z ~ 2. We start from a stellar-mass-selected sample of galaxies with reliable SFR and redshift estimates. We then grid the SFR–M∗ plane in several redshift ranges and measure the infrared luminosity, radio luminosity, radio spectral index, and ultimately the FRC index (i.e. qFIR) of each SFR–M∗–z bin. The infrared luminosities of our SFR–M∗–z bins are estimated using their stacked far-infrared flux densities inferred from observations obtained with the Herschel Space Observatory. Their radio luminosities and radio spectral indices (i.e. α, where Sν ∝ ν−α) are estimated using their stacked 1.4 GHz and 610 MHz flux densities from the Very Large Array and Giant Metre-wave Radio Telescope, respectively. Our far-infrared and radio observations include the most widely studied blank extragalactic fields – GOODS-N, GOODS-S, ECDFS, and COSMOS – covering a total sky area of ~2.0 deg2. Using this methodology, we constrain the radio spectral index and FRC index of star-forming galaxies with M∗ > 1010 M⊙ and 0
doi_str_mv 10.1051/0004-6361/201424937
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786172863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786172863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-3994cb0c637e1aea32e7d88d50d1736a38701cb99822fbb0e05caa73c449f5a33</originalsourceid><addsrcrecordid>eNqNkb1u3DAQhAnDBnK28wRpWKZRjuRSJFXGh_gHuCCB_5KOWFGUTVuWFFIHXFwELt2nyPv5SSzhgqtdLXbxzWAxQ8gHzj5xlvM5Y0xmChSfC8alkAXoHTLjEkTGtFS7ZLYl3pH9lO7GVXADMxIubz2tMWahrSNGX80jVqGjrovRNziErqXYVnRzTb13Q8SGhrbya9rV9AYbXAefxgsdRquL4_OXp79fX57_0b7B1tNVT4eOPv4Rh2Svxib59__nAbk6_nK5OM2W307OFp-XmYMchgyKQrqSOQXac_QIwuvKmCpnFdegEIxm3JVFYYSoy5J5ljtEDU7Kos4R4IB83Pj2sfu18mmwDyE530zfdKtkuTaKa2HUW1CVFzkDzUYUNqiLXUrR17aP4QHjb8uZnTqwU8J2SthuOxhV2UYV0uDXWwnGe6s06Nwa9sPK5eL6-_XRT3sEr5I8iVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765950370</pqid></control><display><type>article</type><title>The far-infrared/radio correlation and radio spectral index of galaxies in the SFR–M∗ plane up to z~2</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Magnelli, B. ; Ivison, R. J. ; Lutz, D. ; Valtchanov, I. ; Farrah, D. ; Berta, S. ; Bertoldi, F. ; Bock, J. ; Cooray, A. ; Ibar, E. ; Karim, A. ; Le Floc’h, E. ; Nordon, R. ; Oliver, S. J. ; Page, M. ; Popesso, P. ; Pozzi, F. ; Rigopoulou, D. ; Riguccini, L. ; Rodighiero, G. ; Rosario, D. ; Roseboom, I. ; Wang, L. ; Wuyts, S.</creator><creatorcontrib>Magnelli, B. ; Ivison, R. J. ; Lutz, D. ; Valtchanov, I. ; Farrah, D. ; Berta, S. ; Bertoldi, F. ; Bock, J. ; Cooray, A. ; Ibar, E. ; Karim, A. ; Le Floc’h, E. ; Nordon, R. ; Oliver, S. J. ; Page, M. ; Popesso, P. ; Pozzi, F. ; Rigopoulou, D. ; Riguccini, L. ; Rodighiero, G. ; Rosario, D. ; Roseboom, I. ; Wang, L. ; Wuyts, S.</creatorcontrib><description>We study the evolution of the radio spectral index and far-infrared/radio correlation (FRC) across the star-formation rate – stellar masse (i.e. SFR–M∗) plane up to z ~ 2. We start from a stellar-mass-selected sample of galaxies with reliable SFR and redshift estimates. We then grid the SFR–M∗ plane in several redshift ranges and measure the infrared luminosity, radio luminosity, radio spectral index, and ultimately the FRC index (i.e. qFIR) of each SFR–M∗–z bin. The infrared luminosities of our SFR–M∗–z bins are estimated using their stacked far-infrared flux densities inferred from observations obtained with the Herschel Space Observatory. Their radio luminosities and radio spectral indices (i.e. α, where Sν ∝ ν−α) are estimated using their stacked 1.4 GHz and 610 MHz flux densities from the Very Large Array and Giant Metre-wave Radio Telescope, respectively. Our far-infrared and radio observations include the most widely studied blank extragalactic fields – GOODS-N, GOODS-S, ECDFS, and COSMOS – covering a total sky area of ~2.0 deg2. Using this methodology, we constrain the radio spectral index and FRC index of star-forming galaxies with M∗ &gt; 1010 M⊙ and 0 &lt;z&lt; 2.3. We find that α1.4 GHz610 MHz does not evolve significantly with redshift or with the distance of a galaxy with respect to the main sequence (MS) of the SFR–M∗ plane (i.e. Δlog (SSFR)MS = log  [ SSFR(galaxy) /SSFRMS(M∗,z) ]). Instead, star-forming galaxies have a radio spectral index consistent with a canonical value of 0.8, which suggests that their radio spectra are dominated by non-thermal optically thin synchrotron emission. We find that the FRC index, qFIR,displays a moderate but statistically significant redshift evolution as qFIR(z) = (2.35 ± 0.08) × (1 + z)−0.12 ± 0.04, consistent with some previous literature. Finally, we find no significant correlation between qFIR and Δlog (SSFR)MS, though a weak positive trend, as observed in one of our redshift bins (i.e. Δ [ qFIR ]/Δ [ Δlog (SSFR)MS ] = 0.22 ± 0.07 at 0.5 &lt;z&lt; 0.8), cannot be firmly ruled out using our dataset.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/201424937</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>Flux ; Flux density ; Galaxies ; galaxies: evolution ; galaxies: formation ; galaxies: high-redshift ; galaxies: starburst ; infrared: galaxies ; Luminosity ; Planes ; Radio ; Red shift ; Spectra</subject><ispartof>Astronomy and astrophysics (Berlin), 2015-01, Vol.573, p.A45</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-3994cb0c637e1aea32e7d88d50d1736a38701cb99822fbb0e05caa73c449f5a33</citedby><cites>FETCH-LOGICAL-c353t-3994cb0c637e1aea32e7d88d50d1736a38701cb99822fbb0e05caa73c449f5a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3727,27924,27925</link.rule.ids></links><search><creatorcontrib>Magnelli, B.</creatorcontrib><creatorcontrib>Ivison, R. J.</creatorcontrib><creatorcontrib>Lutz, D.</creatorcontrib><creatorcontrib>Valtchanov, I.</creatorcontrib><creatorcontrib>Farrah, D.</creatorcontrib><creatorcontrib>Berta, S.</creatorcontrib><creatorcontrib>Bertoldi, F.</creatorcontrib><creatorcontrib>Bock, J.</creatorcontrib><creatorcontrib>Cooray, A.</creatorcontrib><creatorcontrib>Ibar, E.</creatorcontrib><creatorcontrib>Karim, A.</creatorcontrib><creatorcontrib>Le Floc’h, E.</creatorcontrib><creatorcontrib>Nordon, R.</creatorcontrib><creatorcontrib>Oliver, S. J.</creatorcontrib><creatorcontrib>Page, M.</creatorcontrib><creatorcontrib>Popesso, P.</creatorcontrib><creatorcontrib>Pozzi, F.</creatorcontrib><creatorcontrib>Rigopoulou, D.</creatorcontrib><creatorcontrib>Riguccini, L.</creatorcontrib><creatorcontrib>Rodighiero, G.</creatorcontrib><creatorcontrib>Rosario, D.</creatorcontrib><creatorcontrib>Roseboom, I.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Wuyts, S.</creatorcontrib><title>The far-infrared/radio correlation and radio spectral index of galaxies in the SFR–M∗ plane up to z~2</title><title>Astronomy and astrophysics (Berlin)</title><description>We study the evolution of the radio spectral index and far-infrared/radio correlation (FRC) across the star-formation rate – stellar masse (i.e. SFR–M∗) plane up to z ~ 2. We start from a stellar-mass-selected sample of galaxies with reliable SFR and redshift estimates. We then grid the SFR–M∗ plane in several redshift ranges and measure the infrared luminosity, radio luminosity, radio spectral index, and ultimately the FRC index (i.e. qFIR) of each SFR–M∗–z bin. The infrared luminosities of our SFR–M∗–z bins are estimated using their stacked far-infrared flux densities inferred from observations obtained with the Herschel Space Observatory. Their radio luminosities and radio spectral indices (i.e. α, where Sν ∝ ν−α) are estimated using their stacked 1.4 GHz and 610 MHz flux densities from the Very Large Array and Giant Metre-wave Radio Telescope, respectively. Our far-infrared and radio observations include the most widely studied blank extragalactic fields – GOODS-N, GOODS-S, ECDFS, and COSMOS – covering a total sky area of ~2.0 deg2. Using this methodology, we constrain the radio spectral index and FRC index of star-forming galaxies with M∗ &gt; 1010 M⊙ and 0 &lt;z&lt; 2.3. We find that α1.4 GHz610 MHz does not evolve significantly with redshift or with the distance of a galaxy with respect to the main sequence (MS) of the SFR–M∗ plane (i.e. Δlog (SSFR)MS = log  [ SSFR(galaxy) /SSFRMS(M∗,z) ]). Instead, star-forming galaxies have a radio spectral index consistent with a canonical value of 0.8, which suggests that their radio spectra are dominated by non-thermal optically thin synchrotron emission. We find that the FRC index, qFIR,displays a moderate but statistically significant redshift evolution as qFIR(z) = (2.35 ± 0.08) × (1 + z)−0.12 ± 0.04, consistent with some previous literature. Finally, we find no significant correlation between qFIR and Δlog (SSFR)MS, though a weak positive trend, as observed in one of our redshift bins (i.e. Δ [ qFIR ]/Δ [ Δlog (SSFR)MS ] = 0.22 ± 0.07 at 0.5 &lt;z&lt; 0.8), cannot be firmly ruled out using our dataset.</description><subject>Flux</subject><subject>Flux density</subject><subject>Galaxies</subject><subject>galaxies: evolution</subject><subject>galaxies: formation</subject><subject>galaxies: high-redshift</subject><subject>galaxies: starburst</subject><subject>infrared: galaxies</subject><subject>Luminosity</subject><subject>Planes</subject><subject>Radio</subject><subject>Red shift</subject><subject>Spectra</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkb1u3DAQhAnDBnK28wRpWKZRjuRSJFXGh_gHuCCB_5KOWFGUTVuWFFIHXFwELt2nyPv5SSzhgqtdLXbxzWAxQ8gHzj5xlvM5Y0xmChSfC8alkAXoHTLjEkTGtFS7ZLYl3pH9lO7GVXADMxIubz2tMWahrSNGX80jVqGjrovRNziErqXYVnRzTb13Q8SGhrbya9rV9AYbXAefxgsdRquL4_OXp79fX57_0b7B1tNVT4eOPv4Rh2Svxib59__nAbk6_nK5OM2W307OFp-XmYMchgyKQrqSOQXac_QIwuvKmCpnFdegEIxm3JVFYYSoy5J5ljtEDU7Kos4R4IB83Pj2sfu18mmwDyE530zfdKtkuTaKa2HUW1CVFzkDzUYUNqiLXUrR17aP4QHjb8uZnTqwU8J2SthuOxhV2UYV0uDXWwnGe6s06Nwa9sPK5eL6-_XRT3sEr5I8iVs</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Magnelli, B.</creator><creator>Ivison, R. J.</creator><creator>Lutz, D.</creator><creator>Valtchanov, I.</creator><creator>Farrah, D.</creator><creator>Berta, S.</creator><creator>Bertoldi, F.</creator><creator>Bock, J.</creator><creator>Cooray, A.</creator><creator>Ibar, E.</creator><creator>Karim, A.</creator><creator>Le Floc’h, E.</creator><creator>Nordon, R.</creator><creator>Oliver, S. J.</creator><creator>Page, M.</creator><creator>Popesso, P.</creator><creator>Pozzi, F.</creator><creator>Rigopoulou, D.</creator><creator>Riguccini, L.</creator><creator>Rodighiero, G.</creator><creator>Rosario, D.</creator><creator>Roseboom, I.</creator><creator>Wang, L.</creator><creator>Wuyts, S.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201501</creationdate><title>The far-infrared/radio correlation and radio spectral index of galaxies in the SFR–M∗ plane up to z~2</title><author>Magnelli, B. ; Ivison, R. J. ; Lutz, D. ; Valtchanov, I. ; Farrah, D. ; Berta, S. ; Bertoldi, F. ; Bock, J. ; Cooray, A. ; Ibar, E. ; Karim, A. ; Le Floc’h, E. ; Nordon, R. ; Oliver, S. J. ; Page, M. ; Popesso, P. ; Pozzi, F. ; Rigopoulou, D. ; Riguccini, L. ; Rodighiero, G. ; Rosario, D. ; Roseboom, I. ; Wang, L. ; Wuyts, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-3994cb0c637e1aea32e7d88d50d1736a38701cb99822fbb0e05caa73c449f5a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Flux</topic><topic>Flux density</topic><topic>Galaxies</topic><topic>galaxies: evolution</topic><topic>galaxies: formation</topic><topic>galaxies: high-redshift</topic><topic>galaxies: starburst</topic><topic>infrared: galaxies</topic><topic>Luminosity</topic><topic>Planes</topic><topic>Radio</topic><topic>Red shift</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Magnelli, B.</creatorcontrib><creatorcontrib>Ivison, R. J.</creatorcontrib><creatorcontrib>Lutz, D.</creatorcontrib><creatorcontrib>Valtchanov, I.</creatorcontrib><creatorcontrib>Farrah, D.</creatorcontrib><creatorcontrib>Berta, S.</creatorcontrib><creatorcontrib>Bertoldi, F.</creatorcontrib><creatorcontrib>Bock, J.</creatorcontrib><creatorcontrib>Cooray, A.</creatorcontrib><creatorcontrib>Ibar, E.</creatorcontrib><creatorcontrib>Karim, A.</creatorcontrib><creatorcontrib>Le Floc’h, E.</creatorcontrib><creatorcontrib>Nordon, R.</creatorcontrib><creatorcontrib>Oliver, S. J.</creatorcontrib><creatorcontrib>Page, M.</creatorcontrib><creatorcontrib>Popesso, P.</creatorcontrib><creatorcontrib>Pozzi, F.</creatorcontrib><creatorcontrib>Rigopoulou, D.</creatorcontrib><creatorcontrib>Riguccini, L.</creatorcontrib><creatorcontrib>Rodighiero, G.</creatorcontrib><creatorcontrib>Rosario, D.</creatorcontrib><creatorcontrib>Roseboom, I.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Wuyts, S.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Magnelli, B.</au><au>Ivison, R. J.</au><au>Lutz, D.</au><au>Valtchanov, I.</au><au>Farrah, D.</au><au>Berta, S.</au><au>Bertoldi, F.</au><au>Bock, J.</au><au>Cooray, A.</au><au>Ibar, E.</au><au>Karim, A.</au><au>Le Floc’h, E.</au><au>Nordon, R.</au><au>Oliver, S. J.</au><au>Page, M.</au><au>Popesso, P.</au><au>Pozzi, F.</au><au>Rigopoulou, D.</au><au>Riguccini, L.</au><au>Rodighiero, G.</au><au>Rosario, D.</au><au>Roseboom, I.</au><au>Wang, L.</au><au>Wuyts, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The far-infrared/radio correlation and radio spectral index of galaxies in the SFR–M∗ plane up to z~2</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2015-01</date><risdate>2015</risdate><volume>573</volume><spage>A45</spage><pages>A45-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract>We study the evolution of the radio spectral index and far-infrared/radio correlation (FRC) across the star-formation rate – stellar masse (i.e. SFR–M∗) plane up to z ~ 2. We start from a stellar-mass-selected sample of galaxies with reliable SFR and redshift estimates. We then grid the SFR–M∗ plane in several redshift ranges and measure the infrared luminosity, radio luminosity, radio spectral index, and ultimately the FRC index (i.e. qFIR) of each SFR–M∗–z bin. The infrared luminosities of our SFR–M∗–z bins are estimated using their stacked far-infrared flux densities inferred from observations obtained with the Herschel Space Observatory. Their radio luminosities and radio spectral indices (i.e. α, where Sν ∝ ν−α) are estimated using their stacked 1.4 GHz and 610 MHz flux densities from the Very Large Array and Giant Metre-wave Radio Telescope, respectively. Our far-infrared and radio observations include the most widely studied blank extragalactic fields – GOODS-N, GOODS-S, ECDFS, and COSMOS – covering a total sky area of ~2.0 deg2. Using this methodology, we constrain the radio spectral index and FRC index of star-forming galaxies with M∗ &gt; 1010 M⊙ and 0 &lt;z&lt; 2.3. We find that α1.4 GHz610 MHz does not evolve significantly with redshift or with the distance of a galaxy with respect to the main sequence (MS) of the SFR–M∗ plane (i.e. Δlog (SSFR)MS = log  [ SSFR(galaxy) /SSFRMS(M∗,z) ]). Instead, star-forming galaxies have a radio spectral index consistent with a canonical value of 0.8, which suggests that their radio spectra are dominated by non-thermal optically thin synchrotron emission. We find that the FRC index, qFIR,displays a moderate but statistically significant redshift evolution as qFIR(z) = (2.35 ± 0.08) × (1 + z)−0.12 ± 0.04, consistent with some previous literature. Finally, we find no significant correlation between qFIR and Δlog (SSFR)MS, though a weak positive trend, as observed in one of our redshift bins (i.e. Δ [ qFIR ]/Δ [ Δlog (SSFR)MS ] = 0.22 ± 0.07 at 0.5 &lt;z&lt; 0.8), cannot be firmly ruled out using our dataset.</abstract><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201424937</doi></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2015-01, Vol.573, p.A45
issn 0004-6361
1432-0746
language eng
recordid cdi_proquest_miscellaneous_1786172863
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; EZB-FREE-00999 freely available EZB journals
subjects Flux
Flux density
Galaxies
galaxies: evolution
galaxies: formation
galaxies: high-redshift
galaxies: starburst
infrared: galaxies
Luminosity
Planes
Radio
Red shift
Spectra
title The far-infrared/radio correlation and radio spectral index of galaxies in the SFR–M∗ plane up to z~2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A28%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20far-infrared/radio%20correlation%20and%20radio%20spectral%20index%20of%20galaxies%20in%20the%20SFR%E2%80%93M%E2%88%97%20plane%20up%20to%20z~2&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Magnelli,%20B.&rft.date=2015-01&rft.volume=573&rft.spage=A45&rft.pages=A45-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201424937&rft_dat=%3Cproquest_cross%3E1786172863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1765950370&rft_id=info:pmid/&rfr_iscdi=true