Insights into Peptoid Helix Folding Cooperativity from an Improved Backbone Potential
Peptoids (N-substituted oligoglycines) are biomimetic polymers that can fold into a variety of unique structural scaffolds. Peptoid helices, which result from the incorporation of bulky chiral side chains, are a key peptoid structural motif whose formation has not yet been accurately modeled in mole...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2015-12, Vol.119 (50), p.15407-15417 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15417 |
---|---|
container_issue | 50 |
container_start_page | 15407 |
container_title | The journal of physical chemistry. B |
container_volume | 119 |
creator | Mukherjee, Sudipto Zhou, Guangfeng Michel, Chris Voelz, Vincent A |
description | Peptoids (N-substituted oligoglycines) are biomimetic polymers that can fold into a variety of unique structural scaffolds. Peptoid helices, which result from the incorporation of bulky chiral side chains, are a key peptoid structural motif whose formation has not yet been accurately modeled in molecular simulations. Here, we report that a simple modification of the backbone φ-angle potential in GAFF is able to produce well-folded cis-amide helices of (S)-N-(1-phenylethyl)glycine (Nspe), consistent with experiment. We validate our results against both QM calculations and NMR experiments. For this latter task, we make quantitative comparisons to sparse NOE data using the Bayesian Inference of Conformational Populations (BICePs) algorithm, a method we have recently developed for this purpose. We then performed extensive REMD simulations of Nspe oligomers as a function of chain length and temperature to probe the molecular forces driving cooperative helix formation. Analysis of simulation data by Lifson–Roig helix–coil theory show that the modified potential predicts much more cooperative folding for Nspe helices. Unlike peptides, per-residue entropy changes for helix nucleation and extension are mostly positive, suggesting that steric bulk provides the main driving force for folding. We expect these results to inform future work aimed at predicting and designing peptoid peptidomimetics and tertiary assemblies of peptoid helices. |
doi_str_mv | 10.1021/acs.jpcb.5b09625 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786172777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786172777</sourcerecordid><originalsourceid>FETCH-LOGICAL-a406t-b6de65e26054e983007402f784282b50fac6b0842d1adfd6d44fab3bb9e21bfe3</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EouVjZ0IeGWg5u7GdjlDxUakSDDBHdnwBlyQOsVvBv8fQwobEcPJZet5Xp4eQEwZjBpxd6DKMl11pxsLAVHKxQ4ZMcBilUbvbXTKQA3IQwhKAC57LfTLgUuQZ52pInuZtcM8vMVDXRk8fsIveWXqHtXunN762rn2mM-877HV0axc_aNX7huqWzpuu92u09EqXr8a3SB98xDY6XR-RvUrXAY-37yF5url-nN2NFve389nlYqQzkHFkpEUpkEsQGU7zCYDKgFcq3ZZzI6DSpTSQfpZpW1lps6zSZmLMFDkzFU4OydmmN13ytsIQi8aFEutat-hXoWAql0xxpdQ_UAEZFznjCYUNWvY-hB6routdo_uPgkHx5b1I3osv78XWe4qcbttXpkH7G_gRnYDzDfAd9au-TV7-7vsEyyaOwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1750425812</pqid></control><display><type>article</type><title>Insights into Peptoid Helix Folding Cooperativity from an Improved Backbone Potential</title><source>MEDLINE</source><source>ACS Publications</source><creator>Mukherjee, Sudipto ; Zhou, Guangfeng ; Michel, Chris ; Voelz, Vincent A</creator><creatorcontrib>Mukherjee, Sudipto ; Zhou, Guangfeng ; Michel, Chris ; Voelz, Vincent A</creatorcontrib><description>Peptoids (N-substituted oligoglycines) are biomimetic polymers that can fold into a variety of unique structural scaffolds. Peptoid helices, which result from the incorporation of bulky chiral side chains, are a key peptoid structural motif whose formation has not yet been accurately modeled in molecular simulations. Here, we report that a simple modification of the backbone φ-angle potential in GAFF is able to produce well-folded cis-amide helices of (S)-N-(1-phenylethyl)glycine (Nspe), consistent with experiment. We validate our results against both QM calculations and NMR experiments. For this latter task, we make quantitative comparisons to sparse NOE data using the Bayesian Inference of Conformational Populations (BICePs) algorithm, a method we have recently developed for this purpose. We then performed extensive REMD simulations of Nspe oligomers as a function of chain length and temperature to probe the molecular forces driving cooperative helix formation. Analysis of simulation data by Lifson–Roig helix–coil theory show that the modified potential predicts much more cooperative folding for Nspe helices. Unlike peptides, per-residue entropy changes for helix nucleation and extension are mostly positive, suggesting that steric bulk provides the main driving force for folding. We expect these results to inform future work aimed at predicting and designing peptoid peptidomimetics and tertiary assemblies of peptoid helices.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.5b09625</identifier><identifier>PMID: 26584227</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Backbone ; Computer simulation ; Entropy ; Folding ; Formations ; Helices ; Magnetic Resonance Spectroscopy ; Mathematical models ; Models, Molecular ; Peptoids - chemistry ; Protein Folding ; Quantum Theory</subject><ispartof>The journal of physical chemistry. B, 2015-12, Vol.119 (50), p.15407-15417</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a406t-b6de65e26054e983007402f784282b50fac6b0842d1adfd6d44fab3bb9e21bfe3</citedby><cites>FETCH-LOGICAL-a406t-b6de65e26054e983007402f784282b50fac6b0842d1adfd6d44fab3bb9e21bfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.5b09625$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.5b09625$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26584227$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mukherjee, Sudipto</creatorcontrib><creatorcontrib>Zhou, Guangfeng</creatorcontrib><creatorcontrib>Michel, Chris</creatorcontrib><creatorcontrib>Voelz, Vincent A</creatorcontrib><title>Insights into Peptoid Helix Folding Cooperativity from an Improved Backbone Potential</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Peptoids (N-substituted oligoglycines) are biomimetic polymers that can fold into a variety of unique structural scaffolds. Peptoid helices, which result from the incorporation of bulky chiral side chains, are a key peptoid structural motif whose formation has not yet been accurately modeled in molecular simulations. Here, we report that a simple modification of the backbone φ-angle potential in GAFF is able to produce well-folded cis-amide helices of (S)-N-(1-phenylethyl)glycine (Nspe), consistent with experiment. We validate our results against both QM calculations and NMR experiments. For this latter task, we make quantitative comparisons to sparse NOE data using the Bayesian Inference of Conformational Populations (BICePs) algorithm, a method we have recently developed for this purpose. We then performed extensive REMD simulations of Nspe oligomers as a function of chain length and temperature to probe the molecular forces driving cooperative helix formation. Analysis of simulation data by Lifson–Roig helix–coil theory show that the modified potential predicts much more cooperative folding for Nspe helices. Unlike peptides, per-residue entropy changes for helix nucleation and extension are mostly positive, suggesting that steric bulk provides the main driving force for folding. We expect these results to inform future work aimed at predicting and designing peptoid peptidomimetics and tertiary assemblies of peptoid helices.</description><subject>Algorithms</subject><subject>Backbone</subject><subject>Computer simulation</subject><subject>Entropy</subject><subject>Folding</subject><subject>Formations</subject><subject>Helices</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Mathematical models</subject><subject>Models, Molecular</subject><subject>Peptoids - chemistry</subject><subject>Protein Folding</subject><subject>Quantum Theory</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkD1PwzAQhi0EouVjZ0IeGWg5u7GdjlDxUakSDDBHdnwBlyQOsVvBv8fQwobEcPJZet5Xp4eQEwZjBpxd6DKMl11pxsLAVHKxQ4ZMcBilUbvbXTKQA3IQwhKAC57LfTLgUuQZ52pInuZtcM8vMVDXRk8fsIveWXqHtXunN762rn2mM-877HV0axc_aNX7huqWzpuu92u09EqXr8a3SB98xDY6XR-RvUrXAY-37yF5url-nN2NFve389nlYqQzkHFkpEUpkEsQGU7zCYDKgFcq3ZZzI6DSpTSQfpZpW1lps6zSZmLMFDkzFU4OydmmN13ytsIQi8aFEutat-hXoWAql0xxpdQ_UAEZFznjCYUNWvY-hB6routdo_uPgkHx5b1I3osv78XWe4qcbttXpkH7G_gRnYDzDfAd9au-TV7-7vsEyyaOwQ</recordid><startdate>20151217</startdate><enddate>20151217</enddate><creator>Mukherjee, Sudipto</creator><creator>Zhou, Guangfeng</creator><creator>Michel, Chris</creator><creator>Voelz, Vincent A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20151217</creationdate><title>Insights into Peptoid Helix Folding Cooperativity from an Improved Backbone Potential</title><author>Mukherjee, Sudipto ; Zhou, Guangfeng ; Michel, Chris ; Voelz, Vincent A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a406t-b6de65e26054e983007402f784282b50fac6b0842d1adfd6d44fab3bb9e21bfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Backbone</topic><topic>Computer simulation</topic><topic>Entropy</topic><topic>Folding</topic><topic>Formations</topic><topic>Helices</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Mathematical models</topic><topic>Models, Molecular</topic><topic>Peptoids - chemistry</topic><topic>Protein Folding</topic><topic>Quantum Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukherjee, Sudipto</creatorcontrib><creatorcontrib>Zhou, Guangfeng</creatorcontrib><creatorcontrib>Michel, Chris</creatorcontrib><creatorcontrib>Voelz, Vincent A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukherjee, Sudipto</au><au>Zhou, Guangfeng</au><au>Michel, Chris</au><au>Voelz, Vincent A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into Peptoid Helix Folding Cooperativity from an Improved Backbone Potential</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2015-12-17</date><risdate>2015</risdate><volume>119</volume><issue>50</issue><spage>15407</spage><epage>15417</epage><pages>15407-15417</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Peptoids (N-substituted oligoglycines) are biomimetic polymers that can fold into a variety of unique structural scaffolds. Peptoid helices, which result from the incorporation of bulky chiral side chains, are a key peptoid structural motif whose formation has not yet been accurately modeled in molecular simulations. Here, we report that a simple modification of the backbone φ-angle potential in GAFF is able to produce well-folded cis-amide helices of (S)-N-(1-phenylethyl)glycine (Nspe), consistent with experiment. We validate our results against both QM calculations and NMR experiments. For this latter task, we make quantitative comparisons to sparse NOE data using the Bayesian Inference of Conformational Populations (BICePs) algorithm, a method we have recently developed for this purpose. We then performed extensive REMD simulations of Nspe oligomers as a function of chain length and temperature to probe the molecular forces driving cooperative helix formation. Analysis of simulation data by Lifson–Roig helix–coil theory show that the modified potential predicts much more cooperative folding for Nspe helices. Unlike peptides, per-residue entropy changes for helix nucleation and extension are mostly positive, suggesting that steric bulk provides the main driving force for folding. We expect these results to inform future work aimed at predicting and designing peptoid peptidomimetics and tertiary assemblies of peptoid helices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26584227</pmid><doi>10.1021/acs.jpcb.5b09625</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2015-12, Vol.119 (50), p.15407-15417 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786172777 |
source | MEDLINE; ACS Publications |
subjects | Algorithms Backbone Computer simulation Entropy Folding Formations Helices Magnetic Resonance Spectroscopy Mathematical models Models, Molecular Peptoids - chemistry Protein Folding Quantum Theory |
title | Insights into Peptoid Helix Folding Cooperativity from an Improved Backbone Potential |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A25%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20Peptoid%20Helix%20Folding%20Cooperativity%20from%20an%20Improved%20Backbone%20Potential&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Mukherjee,%20Sudipto&rft.date=2015-12-17&rft.volume=119&rft.issue=50&rft.spage=15407&rft.epage=15417&rft.pages=15407-15417&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.5b09625&rft_dat=%3Cproquest_cross%3E1786172777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1750425812&rft_id=info:pmid/26584227&rfr_iscdi=true |