Insights into Peptoid Helix Folding Cooperativity from an Improved Backbone Potential

Peptoids (N-substituted oligoglycines) are biomimetic polymers that can fold into a variety of unique structural scaffolds. Peptoid helices, which result from the incorporation of bulky chiral side chains, are a key peptoid structural motif whose formation has not yet been accurately modeled in mole...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2015-12, Vol.119 (50), p.15407-15417
Hauptverfasser: Mukherjee, Sudipto, Zhou, Guangfeng, Michel, Chris, Voelz, Vincent A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15417
container_issue 50
container_start_page 15407
container_title The journal of physical chemistry. B
container_volume 119
creator Mukherjee, Sudipto
Zhou, Guangfeng
Michel, Chris
Voelz, Vincent A
description Peptoids (N-substituted oligoglycines) are biomimetic polymers that can fold into a variety of unique structural scaffolds. Peptoid helices, which result from the incorporation of bulky chiral side chains, are a key peptoid structural motif whose formation has not yet been accurately modeled in molecular simulations. Here, we report that a simple modification of the backbone φ-angle potential in GAFF is able to produce well-folded cis-amide helices of (S)-N-(1-phenyl­ethyl)­glycine (Nspe), consistent with experiment. We validate our results against both QM calculations and NMR experiments. For this latter task, we make quantitative comparisons to sparse NOE data using the Bayesian Inference of Conformational Populations (BICePs) algorithm, a method we have recently developed for this purpose. We then performed extensive REMD simulations of Nspe oligomers as a function of chain length and temperature to probe the molecular forces driving cooperative helix formation. Analysis of simulation data by Lifson–Roig helix–coil theory show that the modified potential predicts much more cooperative folding for Nspe helices. Unlike peptides, per-residue entropy changes for helix nucleation and extension are mostly positive, suggesting that steric bulk provides the main driving force for folding. We expect these results to inform future work aimed at predicting and designing peptoid peptidomimetics and tertiary assemblies of peptoid helices.
doi_str_mv 10.1021/acs.jpcb.5b09625
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786172777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786172777</sourcerecordid><originalsourceid>FETCH-LOGICAL-a406t-b6de65e26054e983007402f784282b50fac6b0842d1adfd6d44fab3bb9e21bfe3</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EouVjZ0IeGWg5u7GdjlDxUakSDDBHdnwBlyQOsVvBv8fQwobEcPJZet5Xp4eQEwZjBpxd6DKMl11pxsLAVHKxQ4ZMcBilUbvbXTKQA3IQwhKAC57LfTLgUuQZ52pInuZtcM8vMVDXRk8fsIveWXqHtXunN762rn2mM-877HV0axc_aNX7huqWzpuu92u09EqXr8a3SB98xDY6XR-RvUrXAY-37yF5url-nN2NFve389nlYqQzkHFkpEUpkEsQGU7zCYDKgFcq3ZZzI6DSpTSQfpZpW1lps6zSZmLMFDkzFU4OydmmN13ytsIQi8aFEutat-hXoWAql0xxpdQ_UAEZFznjCYUNWvY-hB6routdo_uPgkHx5b1I3osv78XWe4qcbttXpkH7G_gRnYDzDfAd9au-TV7-7vsEyyaOwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1750425812</pqid></control><display><type>article</type><title>Insights into Peptoid Helix Folding Cooperativity from an Improved Backbone Potential</title><source>MEDLINE</source><source>ACS Publications</source><creator>Mukherjee, Sudipto ; Zhou, Guangfeng ; Michel, Chris ; Voelz, Vincent A</creator><creatorcontrib>Mukherjee, Sudipto ; Zhou, Guangfeng ; Michel, Chris ; Voelz, Vincent A</creatorcontrib><description>Peptoids (N-substituted oligoglycines) are biomimetic polymers that can fold into a variety of unique structural scaffolds. Peptoid helices, which result from the incorporation of bulky chiral side chains, are a key peptoid structural motif whose formation has not yet been accurately modeled in molecular simulations. Here, we report that a simple modification of the backbone φ-angle potential in GAFF is able to produce well-folded cis-amide helices of (S)-N-(1-phenyl­ethyl)­glycine (Nspe), consistent with experiment. We validate our results against both QM calculations and NMR experiments. For this latter task, we make quantitative comparisons to sparse NOE data using the Bayesian Inference of Conformational Populations (BICePs) algorithm, a method we have recently developed for this purpose. We then performed extensive REMD simulations of Nspe oligomers as a function of chain length and temperature to probe the molecular forces driving cooperative helix formation. Analysis of simulation data by Lifson–Roig helix–coil theory show that the modified potential predicts much more cooperative folding for Nspe helices. Unlike peptides, per-residue entropy changes for helix nucleation and extension are mostly positive, suggesting that steric bulk provides the main driving force for folding. We expect these results to inform future work aimed at predicting and designing peptoid peptidomimetics and tertiary assemblies of peptoid helices.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.5b09625</identifier><identifier>PMID: 26584227</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Backbone ; Computer simulation ; Entropy ; Folding ; Formations ; Helices ; Magnetic Resonance Spectroscopy ; Mathematical models ; Models, Molecular ; Peptoids - chemistry ; Protein Folding ; Quantum Theory</subject><ispartof>The journal of physical chemistry. B, 2015-12, Vol.119 (50), p.15407-15417</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a406t-b6de65e26054e983007402f784282b50fac6b0842d1adfd6d44fab3bb9e21bfe3</citedby><cites>FETCH-LOGICAL-a406t-b6de65e26054e983007402f784282b50fac6b0842d1adfd6d44fab3bb9e21bfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.5b09625$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.5b09625$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26584227$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mukherjee, Sudipto</creatorcontrib><creatorcontrib>Zhou, Guangfeng</creatorcontrib><creatorcontrib>Michel, Chris</creatorcontrib><creatorcontrib>Voelz, Vincent A</creatorcontrib><title>Insights into Peptoid Helix Folding Cooperativity from an Improved Backbone Potential</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Peptoids (N-substituted oligoglycines) are biomimetic polymers that can fold into a variety of unique structural scaffolds. Peptoid helices, which result from the incorporation of bulky chiral side chains, are a key peptoid structural motif whose formation has not yet been accurately modeled in molecular simulations. Here, we report that a simple modification of the backbone φ-angle potential in GAFF is able to produce well-folded cis-amide helices of (S)-N-(1-phenyl­ethyl)­glycine (Nspe), consistent with experiment. We validate our results against both QM calculations and NMR experiments. For this latter task, we make quantitative comparisons to sparse NOE data using the Bayesian Inference of Conformational Populations (BICePs) algorithm, a method we have recently developed for this purpose. We then performed extensive REMD simulations of Nspe oligomers as a function of chain length and temperature to probe the molecular forces driving cooperative helix formation. Analysis of simulation data by Lifson–Roig helix–coil theory show that the modified potential predicts much more cooperative folding for Nspe helices. Unlike peptides, per-residue entropy changes for helix nucleation and extension are mostly positive, suggesting that steric bulk provides the main driving force for folding. We expect these results to inform future work aimed at predicting and designing peptoid peptidomimetics and tertiary assemblies of peptoid helices.</description><subject>Algorithms</subject><subject>Backbone</subject><subject>Computer simulation</subject><subject>Entropy</subject><subject>Folding</subject><subject>Formations</subject><subject>Helices</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Mathematical models</subject><subject>Models, Molecular</subject><subject>Peptoids - chemistry</subject><subject>Protein Folding</subject><subject>Quantum Theory</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkD1PwzAQhi0EouVjZ0IeGWg5u7GdjlDxUakSDDBHdnwBlyQOsVvBv8fQwobEcPJZet5Xp4eQEwZjBpxd6DKMl11pxsLAVHKxQ4ZMcBilUbvbXTKQA3IQwhKAC57LfTLgUuQZ52pInuZtcM8vMVDXRk8fsIveWXqHtXunN762rn2mM-877HV0axc_aNX7huqWzpuu92u09EqXr8a3SB98xDY6XR-RvUrXAY-37yF5url-nN2NFve389nlYqQzkHFkpEUpkEsQGU7zCYDKgFcq3ZZzI6DSpTSQfpZpW1lps6zSZmLMFDkzFU4OydmmN13ytsIQi8aFEutat-hXoWAql0xxpdQ_UAEZFznjCYUNWvY-hB6routdo_uPgkHx5b1I3osv78XWe4qcbttXpkH7G_gRnYDzDfAd9au-TV7-7vsEyyaOwQ</recordid><startdate>20151217</startdate><enddate>20151217</enddate><creator>Mukherjee, Sudipto</creator><creator>Zhou, Guangfeng</creator><creator>Michel, Chris</creator><creator>Voelz, Vincent A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20151217</creationdate><title>Insights into Peptoid Helix Folding Cooperativity from an Improved Backbone Potential</title><author>Mukherjee, Sudipto ; Zhou, Guangfeng ; Michel, Chris ; Voelz, Vincent A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a406t-b6de65e26054e983007402f784282b50fac6b0842d1adfd6d44fab3bb9e21bfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Backbone</topic><topic>Computer simulation</topic><topic>Entropy</topic><topic>Folding</topic><topic>Formations</topic><topic>Helices</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Mathematical models</topic><topic>Models, Molecular</topic><topic>Peptoids - chemistry</topic><topic>Protein Folding</topic><topic>Quantum Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukherjee, Sudipto</creatorcontrib><creatorcontrib>Zhou, Guangfeng</creatorcontrib><creatorcontrib>Michel, Chris</creatorcontrib><creatorcontrib>Voelz, Vincent A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukherjee, Sudipto</au><au>Zhou, Guangfeng</au><au>Michel, Chris</au><au>Voelz, Vincent A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into Peptoid Helix Folding Cooperativity from an Improved Backbone Potential</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2015-12-17</date><risdate>2015</risdate><volume>119</volume><issue>50</issue><spage>15407</spage><epage>15417</epage><pages>15407-15417</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Peptoids (N-substituted oligoglycines) are biomimetic polymers that can fold into a variety of unique structural scaffolds. Peptoid helices, which result from the incorporation of bulky chiral side chains, are a key peptoid structural motif whose formation has not yet been accurately modeled in molecular simulations. Here, we report that a simple modification of the backbone φ-angle potential in GAFF is able to produce well-folded cis-amide helices of (S)-N-(1-phenyl­ethyl)­glycine (Nspe), consistent with experiment. We validate our results against both QM calculations and NMR experiments. For this latter task, we make quantitative comparisons to sparse NOE data using the Bayesian Inference of Conformational Populations (BICePs) algorithm, a method we have recently developed for this purpose. We then performed extensive REMD simulations of Nspe oligomers as a function of chain length and temperature to probe the molecular forces driving cooperative helix formation. Analysis of simulation data by Lifson–Roig helix–coil theory show that the modified potential predicts much more cooperative folding for Nspe helices. Unlike peptides, per-residue entropy changes for helix nucleation and extension are mostly positive, suggesting that steric bulk provides the main driving force for folding. We expect these results to inform future work aimed at predicting and designing peptoid peptidomimetics and tertiary assemblies of peptoid helices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26584227</pmid><doi>10.1021/acs.jpcb.5b09625</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2015-12, Vol.119 (50), p.15407-15417
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_1786172777
source MEDLINE; ACS Publications
subjects Algorithms
Backbone
Computer simulation
Entropy
Folding
Formations
Helices
Magnetic Resonance Spectroscopy
Mathematical models
Models, Molecular
Peptoids - chemistry
Protein Folding
Quantum Theory
title Insights into Peptoid Helix Folding Cooperativity from an Improved Backbone Potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A25%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20Peptoid%20Helix%20Folding%20Cooperativity%20from%20an%20Improved%20Backbone%20Potential&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Mukherjee,%20Sudipto&rft.date=2015-12-17&rft.volume=119&rft.issue=50&rft.spage=15407&rft.epage=15417&rft.pages=15407-15417&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.5b09625&rft_dat=%3Cproquest_cross%3E1786172777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1750425812&rft_id=info:pmid/26584227&rfr_iscdi=true