Molecular dynamics-based cohesive zone representation of microstructure and stress evolutions of nickel intergranular fracture process: Effects of temperature

The crack-tip atomic stress distributions and microstructure evolutions of the intergranular crack in bicrystalline nickel at different temperatures. [Display omitted] •Molecular dynamics-based cohesive zone model is used to study intergranular fracture.•The relationship between the stress field and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational materials science 2016-02, Vol.113, p.203-210
Hauptverfasser: Wu, Wen-Ping, Li, Nan-Lin, Li, Yun-Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 210
container_issue
container_start_page 203
container_title Computational materials science
container_volume 113
creator Wu, Wen-Ping
Li, Nan-Lin
Li, Yun-Li
description The crack-tip atomic stress distributions and microstructure evolutions of the intergranular crack in bicrystalline nickel at different temperatures. [Display omitted] •Molecular dynamics-based cohesive zone model is used to study intergranular fracture.•The relationship between the stress field and microstructural evolution is analyzed.•Temperature dependence of mechanisms of intergranular fracture is revealed.•The stress and opening displacement relations are obtained at different temperatures. In this study, we find microstructure mechanisms and stress distributions around the crack-tip of an intergranular fracture process in bicrystal nickel are strongly dependent on temperature by using a molecular dynamics (MD)-based cohesive zone model (CZM). At a lower temperature, deformation twinning occurs in the two opposite directions along the grain boundary, and the crack propagation eventually forms an intergranular fracture. As the temperature increasing, deformation twinning is becoming increasingly hard to occur around the crack-tip along the grain boundary but more readily to generate the slip bands, and the crack propagation will not form intergranular fracture along the grain boundary. Moreover, based on the calculation of CZM, the slip bands are stronger to prevent intergranular crack growth than deformation twinning around the crack-tip, and a high stress is found in the region of microstructure evolution near the crack-tip. The present results may provide useful information for understanding intergranular fracture mechanisms and stress distributions at the atomic-scale.
doi_str_mv 10.1016/j.commatsci.2015.12.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786172638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025615007752</els_id><sourcerecordid>1786172638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-abf3dd1669389c84c237583e07eceb181818b4a42d1d08bf68b5aa63d619e0843</originalsourceid><addsrcrecordid>eNqFkc9u3CAQxlHVSN0mfYZyzMUOg70Y5xZF-VMpVS_JGWEYt2xt2ABeKXmYPGtxtuq14jBC_L4ZvvkI-QqsBgbiYlebMM86J-NqzmBbA68Zgw9kA7LrKyYZfCQb1vOuYnwrPpHPKe0KIHrJN-Tte5jQLJOO1L54PTuTqkEntNSEX5jcAelr8Egj7iMm9FlnFzwNIy1oDCnHxeQlItXe0nLDlCgewrSsWFo578xvnKjzGePPqP37rDHqo2wfgymaS3ozjmjyuyLjvMeo1_czcjLqKeGXv_WUPN3ePF7fVw8_7r5dXz1UpoU2V3oYG2tBiL6RvZGt4U23lQ2yDg0OINcztLrlFiyTwyjksNVaNFZAj0y2zSk5P_Yt_3leMGU1u2RwmrTHsCQFnRTQcdHIgnZHdLWfIo5qH92s44sCptZE1E79S0StiSjgqiy8KK-OSixODg6jKgR6g9bF4l3Z4P7b4w8xVp6Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786172638</pqid></control><display><type>article</type><title>Molecular dynamics-based cohesive zone representation of microstructure and stress evolutions of nickel intergranular fracture process: Effects of temperature</title><source>Elsevier ScienceDirect Journals</source><creator>Wu, Wen-Ping ; Li, Nan-Lin ; Li, Yun-Li</creator><creatorcontrib>Wu, Wen-Ping ; Li, Nan-Lin ; Li, Yun-Li</creatorcontrib><description>The crack-tip atomic stress distributions and microstructure evolutions of the intergranular crack in bicrystalline nickel at different temperatures. [Display omitted] •Molecular dynamics-based cohesive zone model is used to study intergranular fracture.•The relationship between the stress field and microstructural evolution is analyzed.•Temperature dependence of mechanisms of intergranular fracture is revealed.•The stress and opening displacement relations are obtained at different temperatures. In this study, we find microstructure mechanisms and stress distributions around the crack-tip of an intergranular fracture process in bicrystal nickel are strongly dependent on temperature by using a molecular dynamics (MD)-based cohesive zone model (CZM). At a lower temperature, deformation twinning occurs in the two opposite directions along the grain boundary, and the crack propagation eventually forms an intergranular fracture. As the temperature increasing, deformation twinning is becoming increasingly hard to occur around the crack-tip along the grain boundary but more readily to generate the slip bands, and the crack propagation will not form intergranular fracture along the grain boundary. Moreover, based on the calculation of CZM, the slip bands are stronger to prevent intergranular crack growth than deformation twinning around the crack-tip, and a high stress is found in the region of microstructure evolution near the crack-tip. The present results may provide useful information for understanding intergranular fracture mechanisms and stress distributions at the atomic-scale.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2015.12.001</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Cohesion ; Cohesive zone model ; Crack propagation ; Crack-tip stress ; Deformation ; Deformation twinning ; Grain boundaries ; Intergranular fracture ; Microstructure ; Molecular dynamics simulations ; Nickel ; Twinning</subject><ispartof>Computational materials science, 2016-02, Vol.113, p.203-210</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-abf3dd1669389c84c237583e07eceb181818b4a42d1d08bf68b5aa63d619e0843</citedby><cites>FETCH-LOGICAL-c414t-abf3dd1669389c84c237583e07eceb181818b4a42d1d08bf68b5aa63d619e0843</cites><orcidid>0000-0003-1569-1337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.commatsci.2015.12.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Wu, Wen-Ping</creatorcontrib><creatorcontrib>Li, Nan-Lin</creatorcontrib><creatorcontrib>Li, Yun-Li</creatorcontrib><title>Molecular dynamics-based cohesive zone representation of microstructure and stress evolutions of nickel intergranular fracture process: Effects of temperature</title><title>Computational materials science</title><description>The crack-tip atomic stress distributions and microstructure evolutions of the intergranular crack in bicrystalline nickel at different temperatures. [Display omitted] •Molecular dynamics-based cohesive zone model is used to study intergranular fracture.•The relationship between the stress field and microstructural evolution is analyzed.•Temperature dependence of mechanisms of intergranular fracture is revealed.•The stress and opening displacement relations are obtained at different temperatures. In this study, we find microstructure mechanisms and stress distributions around the crack-tip of an intergranular fracture process in bicrystal nickel are strongly dependent on temperature by using a molecular dynamics (MD)-based cohesive zone model (CZM). At a lower temperature, deformation twinning occurs in the two opposite directions along the grain boundary, and the crack propagation eventually forms an intergranular fracture. As the temperature increasing, deformation twinning is becoming increasingly hard to occur around the crack-tip along the grain boundary but more readily to generate the slip bands, and the crack propagation will not form intergranular fracture along the grain boundary. Moreover, based on the calculation of CZM, the slip bands are stronger to prevent intergranular crack growth than deformation twinning around the crack-tip, and a high stress is found in the region of microstructure evolution near the crack-tip. The present results may provide useful information for understanding intergranular fracture mechanisms and stress distributions at the atomic-scale.</description><subject>Cohesion</subject><subject>Cohesive zone model</subject><subject>Crack propagation</subject><subject>Crack-tip stress</subject><subject>Deformation</subject><subject>Deformation twinning</subject><subject>Grain boundaries</subject><subject>Intergranular fracture</subject><subject>Microstructure</subject><subject>Molecular dynamics simulations</subject><subject>Nickel</subject><subject>Twinning</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u3CAQxlHVSN0mfYZyzMUOg70Y5xZF-VMpVS_JGWEYt2xt2ABeKXmYPGtxtuq14jBC_L4ZvvkI-QqsBgbiYlebMM86J-NqzmBbA68Zgw9kA7LrKyYZfCQb1vOuYnwrPpHPKe0KIHrJN-Tte5jQLJOO1L54PTuTqkEntNSEX5jcAelr8Egj7iMm9FlnFzwNIy1oDCnHxeQlItXe0nLDlCgewrSsWFo578xvnKjzGePPqP37rDHqo2wfgymaS3ozjmjyuyLjvMeo1_czcjLqKeGXv_WUPN3ePF7fVw8_7r5dXz1UpoU2V3oYG2tBiL6RvZGt4U23lQ2yDg0OINcztLrlFiyTwyjksNVaNFZAj0y2zSk5P_Yt_3leMGU1u2RwmrTHsCQFnRTQcdHIgnZHdLWfIo5qH92s44sCptZE1E79S0StiSjgqiy8KK-OSixODg6jKgR6g9bF4l3Z4P7b4w8xVp6Z</recordid><startdate>20160215</startdate><enddate>20160215</enddate><creator>Wu, Wen-Ping</creator><creator>Li, Nan-Lin</creator><creator>Li, Yun-Li</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1569-1337</orcidid></search><sort><creationdate>20160215</creationdate><title>Molecular dynamics-based cohesive zone representation of microstructure and stress evolutions of nickel intergranular fracture process: Effects of temperature</title><author>Wu, Wen-Ping ; Li, Nan-Lin ; Li, Yun-Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-abf3dd1669389c84c237583e07eceb181818b4a42d1d08bf68b5aa63d619e0843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cohesion</topic><topic>Cohesive zone model</topic><topic>Crack propagation</topic><topic>Crack-tip stress</topic><topic>Deformation</topic><topic>Deformation twinning</topic><topic>Grain boundaries</topic><topic>Intergranular fracture</topic><topic>Microstructure</topic><topic>Molecular dynamics simulations</topic><topic>Nickel</topic><topic>Twinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Wen-Ping</creatorcontrib><creatorcontrib>Li, Nan-Lin</creatorcontrib><creatorcontrib>Li, Yun-Li</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Wen-Ping</au><au>Li, Nan-Lin</au><au>Li, Yun-Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular dynamics-based cohesive zone representation of microstructure and stress evolutions of nickel intergranular fracture process: Effects of temperature</atitle><jtitle>Computational materials science</jtitle><date>2016-02-15</date><risdate>2016</risdate><volume>113</volume><spage>203</spage><epage>210</epage><pages>203-210</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>The crack-tip atomic stress distributions and microstructure evolutions of the intergranular crack in bicrystalline nickel at different temperatures. [Display omitted] •Molecular dynamics-based cohesive zone model is used to study intergranular fracture.•The relationship between the stress field and microstructural evolution is analyzed.•Temperature dependence of mechanisms of intergranular fracture is revealed.•The stress and opening displacement relations are obtained at different temperatures. In this study, we find microstructure mechanisms and stress distributions around the crack-tip of an intergranular fracture process in bicrystal nickel are strongly dependent on temperature by using a molecular dynamics (MD)-based cohesive zone model (CZM). At a lower temperature, deformation twinning occurs in the two opposite directions along the grain boundary, and the crack propagation eventually forms an intergranular fracture. As the temperature increasing, deformation twinning is becoming increasingly hard to occur around the crack-tip along the grain boundary but more readily to generate the slip bands, and the crack propagation will not form intergranular fracture along the grain boundary. Moreover, based on the calculation of CZM, the slip bands are stronger to prevent intergranular crack growth than deformation twinning around the crack-tip, and a high stress is found in the region of microstructure evolution near the crack-tip. The present results may provide useful information for understanding intergranular fracture mechanisms and stress distributions at the atomic-scale.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2015.12.001</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1569-1337</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0927-0256
ispartof Computational materials science, 2016-02, Vol.113, p.203-210
issn 0927-0256
1879-0801
language eng
recordid cdi_proquest_miscellaneous_1786172638
source Elsevier ScienceDirect Journals
subjects Cohesion
Cohesive zone model
Crack propagation
Crack-tip stress
Deformation
Deformation twinning
Grain boundaries
Intergranular fracture
Microstructure
Molecular dynamics simulations
Nickel
Twinning
title Molecular dynamics-based cohesive zone representation of microstructure and stress evolutions of nickel intergranular fracture process: Effects of temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A12%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20dynamics-based%20cohesive%20zone%20representation%20of%20microstructure%20and%20stress%20evolutions%20of%20nickel%20intergranular%20fracture%20process:%20Effects%20of%20temperature&rft.jtitle=Computational%20materials%20science&rft.au=Wu,%20Wen-Ping&rft.date=2016-02-15&rft.volume=113&rft.spage=203&rft.epage=210&rft.pages=203-210&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2015.12.001&rft_dat=%3Cproquest_cross%3E1786172638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786172638&rft_id=info:pmid/&rft_els_id=S0927025615007752&rfr_iscdi=true