Optimization of a Michigan-type silicon microprobe for infrared neural stimulation

This paper presents a Michigan-type deep brain silicon optrode capable of delivering infrared light into the neural tissue. Silicon optrodes were fabricated by deep reactive ion etching (DRIE) and subsequent wet chemical polishing. The proposed method is feasible to reduce the sidewall roughness sig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2016-03, Vol.224, p.676-682
Hauptverfasser: Kiss, M., Földesy, P., Fekete, Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 682
container_issue
container_start_page 676
container_title Sensors and actuators. B, Chemical
container_volume 224
creator Kiss, M.
Földesy, P.
Fekete, Z.
description This paper presents a Michigan-type deep brain silicon optrode capable of delivering infrared light into the neural tissue. Silicon optrodes were fabricated by deep reactive ion etching (DRIE) and subsequent wet chemical polishing. The proposed method is feasible to reduce the sidewall roughness significantly and is able to turn the substrate material into an infrared waveguide of sufficient efficiency for infrared neural stimulation. The advantage of our approach is that the fabrication process is fully compatible with that of functional neural microelectrodes. Moreover, there is no need to add further waveguide layers on top of such devices aiming IR stimulation, which may induce less tissue trauma. Our design also facilitates the spatially controlled illumination of the tissue through integrated micromirrors and microlenses and the precise alignment of an optical fiber through an integrated guide slot. An average system efficiency of 22.1% with a Gaussian beam profile (NA=0.13) was achieved by reducing the RMS roughness of the sidewall down to 8.7nm using 1310nm wavelength illumination and coupled core diameter of 9μm. To our knowledge, this is the first investigation of the optical properties of a Michigan-type silicon microprobe aiming infrared neural stimulation at the substrate level.
doi_str_mv 10.1016/j.snb.2015.10.084
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786169049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400515305505</els_id><sourcerecordid>1786169049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-32a33ded957225469ca7ebc15f6381191e28881836706efc26bfe4ed3ce89d673</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AHdZumm9adokxZUMvmBkQHQd0vRWM_Rl0grjrzfjuHZ1uY9zuOcj5JJByoCJ620a-irNgBWxT0HlR2TBlOQJBymPyQLKrEhygOKUnIWwBYCcC1iQl804uc59m8kNPR0aauizsx_u3fTJtBuRBtc6G1eds34Y_VAhbQZPXd9447GmPc7etDREl7n9dTknJ41pA1781SV5u797XT0m683D0-p2nVjOYUp4ZjivsS4LmWVFLkprJFaWFY3girGSYaaUYooLCQIbm4mqwRxrblGVtZB8Sa4OvvGrzxnDpDsXLLat6XGYg2ZSCSZKyMt4yg6nMUMIHhs9etcZv9MM9J6f3urIT-_57UeRX9TcHDQYM3w59DpYh73F2nm0k64H94_6B1A1eRc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786169049</pqid></control><display><type>article</type><title>Optimization of a Michigan-type silicon microprobe for infrared neural stimulation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kiss, M. ; Földesy, P. ; Fekete, Z.</creator><creatorcontrib>Kiss, M. ; Földesy, P. ; Fekete, Z.</creatorcontrib><description>This paper presents a Michigan-type deep brain silicon optrode capable of delivering infrared light into the neural tissue. Silicon optrodes were fabricated by deep reactive ion etching (DRIE) and subsequent wet chemical polishing. The proposed method is feasible to reduce the sidewall roughness significantly and is able to turn the substrate material into an infrared waveguide of sufficient efficiency for infrared neural stimulation. The advantage of our approach is that the fabrication process is fully compatible with that of functional neural microelectrodes. Moreover, there is no need to add further waveguide layers on top of such devices aiming IR stimulation, which may induce less tissue trauma. Our design also facilitates the spatially controlled illumination of the tissue through integrated micromirrors and microlenses and the precise alignment of an optical fiber through an integrated guide slot. An average system efficiency of 22.1% with a Gaussian beam profile (NA=0.13) was achieved by reducing the RMS roughness of the sidewall down to 8.7nm using 1310nm wavelength illumination and coupled core diameter of 9μm. To our knowledge, this is the first investigation of the optical properties of a Michigan-type silicon microprobe aiming infrared neural stimulation at the substrate level.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2015.10.084</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Devices ; Illumination ; Infrared ; Infrared neural stimulation ; Neural probes ; Optrode ; Roughness ; Silicon ; Silicon substrates ; Silicon waveguide ; Stimulation ; Waveguides</subject><ispartof>Sensors and actuators. B, Chemical, 2016-03, Vol.224, p.676-682</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-32a33ded957225469ca7ebc15f6381191e28881836706efc26bfe4ed3ce89d673</citedby><cites>FETCH-LOGICAL-c330t-32a33ded957225469ca7ebc15f6381191e28881836706efc26bfe4ed3ce89d673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925400515305505$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Kiss, M.</creatorcontrib><creatorcontrib>Földesy, P.</creatorcontrib><creatorcontrib>Fekete, Z.</creatorcontrib><title>Optimization of a Michigan-type silicon microprobe for infrared neural stimulation</title><title>Sensors and actuators. B, Chemical</title><description>This paper presents a Michigan-type deep brain silicon optrode capable of delivering infrared light into the neural tissue. Silicon optrodes were fabricated by deep reactive ion etching (DRIE) and subsequent wet chemical polishing. The proposed method is feasible to reduce the sidewall roughness significantly and is able to turn the substrate material into an infrared waveguide of sufficient efficiency for infrared neural stimulation. The advantage of our approach is that the fabrication process is fully compatible with that of functional neural microelectrodes. Moreover, there is no need to add further waveguide layers on top of such devices aiming IR stimulation, which may induce less tissue trauma. Our design also facilitates the spatially controlled illumination of the tissue through integrated micromirrors and microlenses and the precise alignment of an optical fiber through an integrated guide slot. An average system efficiency of 22.1% with a Gaussian beam profile (NA=0.13) was achieved by reducing the RMS roughness of the sidewall down to 8.7nm using 1310nm wavelength illumination and coupled core diameter of 9μm. To our knowledge, this is the first investigation of the optical properties of a Michigan-type silicon microprobe aiming infrared neural stimulation at the substrate level.</description><subject>Devices</subject><subject>Illumination</subject><subject>Infrared</subject><subject>Infrared neural stimulation</subject><subject>Neural probes</subject><subject>Optrode</subject><subject>Roughness</subject><subject>Silicon</subject><subject>Silicon substrates</subject><subject>Silicon waveguide</subject><subject>Stimulation</subject><subject>Waveguides</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AHdZumm9adokxZUMvmBkQHQd0vRWM_Rl0grjrzfjuHZ1uY9zuOcj5JJByoCJ620a-irNgBWxT0HlR2TBlOQJBymPyQLKrEhygOKUnIWwBYCcC1iQl804uc59m8kNPR0aauizsx_u3fTJtBuRBtc6G1eds34Y_VAhbQZPXd9447GmPc7etDREl7n9dTknJ41pA1781SV5u797XT0m683D0-p2nVjOYUp4ZjivsS4LmWVFLkprJFaWFY3girGSYaaUYooLCQIbm4mqwRxrblGVtZB8Sa4OvvGrzxnDpDsXLLat6XGYg2ZSCSZKyMt4yg6nMUMIHhs9etcZv9MM9J6f3urIT-_57UeRX9TcHDQYM3w59DpYh73F2nm0k64H94_6B1A1eRc</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Kiss, M.</creator><creator>Földesy, P.</creator><creator>Fekete, Z.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160301</creationdate><title>Optimization of a Michigan-type silicon microprobe for infrared neural stimulation</title><author>Kiss, M. ; Földesy, P. ; Fekete, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-32a33ded957225469ca7ebc15f6381191e28881836706efc26bfe4ed3ce89d673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Devices</topic><topic>Illumination</topic><topic>Infrared</topic><topic>Infrared neural stimulation</topic><topic>Neural probes</topic><topic>Optrode</topic><topic>Roughness</topic><topic>Silicon</topic><topic>Silicon substrates</topic><topic>Silicon waveguide</topic><topic>Stimulation</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiss, M.</creatorcontrib><creatorcontrib>Földesy, P.</creatorcontrib><creatorcontrib>Fekete, Z.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiss, M.</au><au>Földesy, P.</au><au>Fekete, Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of a Michigan-type silicon microprobe for infrared neural stimulation</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2016-03-01</date><risdate>2016</risdate><volume>224</volume><spage>676</spage><epage>682</epage><pages>676-682</pages><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>This paper presents a Michigan-type deep brain silicon optrode capable of delivering infrared light into the neural tissue. Silicon optrodes were fabricated by deep reactive ion etching (DRIE) and subsequent wet chemical polishing. The proposed method is feasible to reduce the sidewall roughness significantly and is able to turn the substrate material into an infrared waveguide of sufficient efficiency for infrared neural stimulation. The advantage of our approach is that the fabrication process is fully compatible with that of functional neural microelectrodes. Moreover, there is no need to add further waveguide layers on top of such devices aiming IR stimulation, which may induce less tissue trauma. Our design also facilitates the spatially controlled illumination of the tissue through integrated micromirrors and microlenses and the precise alignment of an optical fiber through an integrated guide slot. An average system efficiency of 22.1% with a Gaussian beam profile (NA=0.13) was achieved by reducing the RMS roughness of the sidewall down to 8.7nm using 1310nm wavelength illumination and coupled core diameter of 9μm. To our knowledge, this is the first investigation of the optical properties of a Michigan-type silicon microprobe aiming infrared neural stimulation at the substrate level.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2015.10.084</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2016-03, Vol.224, p.676-682
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_miscellaneous_1786169049
source Elsevier ScienceDirect Journals Complete
subjects Devices
Illumination
Infrared
Infrared neural stimulation
Neural probes
Optrode
Roughness
Silicon
Silicon substrates
Silicon waveguide
Stimulation
Waveguides
title Optimization of a Michigan-type silicon microprobe for infrared neural stimulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A42%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20a%20Michigan-type%20silicon%20microprobe%20for%20infrared%20neural%20stimulation&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Kiss,%20M.&rft.date=2016-03-01&rft.volume=224&rft.spage=676&rft.epage=682&rft.pages=676-682&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2015.10.084&rft_dat=%3Cproquest_cross%3E1786169049%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786169049&rft_id=info:pmid/&rft_els_id=S0925400515305505&rfr_iscdi=true