Optimization of a Michigan-type silicon microprobe for infrared neural stimulation
This paper presents a Michigan-type deep brain silicon optrode capable of delivering infrared light into the neural tissue. Silicon optrodes were fabricated by deep reactive ion etching (DRIE) and subsequent wet chemical polishing. The proposed method is feasible to reduce the sidewall roughness sig...
Gespeichert in:
Veröffentlicht in: | Sensors and actuators. B, Chemical Chemical, 2016-03, Vol.224, p.676-682 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 682 |
---|---|
container_issue | |
container_start_page | 676 |
container_title | Sensors and actuators. B, Chemical |
container_volume | 224 |
creator | Kiss, M. Földesy, P. Fekete, Z. |
description | This paper presents a Michigan-type deep brain silicon optrode capable of delivering infrared light into the neural tissue. Silicon optrodes were fabricated by deep reactive ion etching (DRIE) and subsequent wet chemical polishing. The proposed method is feasible to reduce the sidewall roughness significantly and is able to turn the substrate material into an infrared waveguide of sufficient efficiency for infrared neural stimulation. The advantage of our approach is that the fabrication process is fully compatible with that of functional neural microelectrodes. Moreover, there is no need to add further waveguide layers on top of such devices aiming IR stimulation, which may induce less tissue trauma. Our design also facilitates the spatially controlled illumination of the tissue through integrated micromirrors and microlenses and the precise alignment of an optical fiber through an integrated guide slot. An average system efficiency of 22.1% with a Gaussian beam profile (NA=0.13) was achieved by reducing the RMS roughness of the sidewall down to 8.7nm using 1310nm wavelength illumination and coupled core diameter of 9μm. To our knowledge, this is the first investigation of the optical properties of a Michigan-type silicon microprobe aiming infrared neural stimulation at the substrate level. |
doi_str_mv | 10.1016/j.snb.2015.10.084 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786169049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400515305505</els_id><sourcerecordid>1786169049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-32a33ded957225469ca7ebc15f6381191e28881836706efc26bfe4ed3ce89d673</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AHdZumm9adokxZUMvmBkQHQd0vRWM_Rl0grjrzfjuHZ1uY9zuOcj5JJByoCJ620a-irNgBWxT0HlR2TBlOQJBymPyQLKrEhygOKUnIWwBYCcC1iQl804uc59m8kNPR0aauizsx_u3fTJtBuRBtc6G1eds34Y_VAhbQZPXd9447GmPc7etDREl7n9dTknJ41pA1781SV5u797XT0m683D0-p2nVjOYUp4ZjivsS4LmWVFLkprJFaWFY3girGSYaaUYooLCQIbm4mqwRxrblGVtZB8Sa4OvvGrzxnDpDsXLLat6XGYg2ZSCSZKyMt4yg6nMUMIHhs9etcZv9MM9J6f3urIT-_57UeRX9TcHDQYM3w59DpYh73F2nm0k64H94_6B1A1eRc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786169049</pqid></control><display><type>article</type><title>Optimization of a Michigan-type silicon microprobe for infrared neural stimulation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kiss, M. ; Földesy, P. ; Fekete, Z.</creator><creatorcontrib>Kiss, M. ; Földesy, P. ; Fekete, Z.</creatorcontrib><description>This paper presents a Michigan-type deep brain silicon optrode capable of delivering infrared light into the neural tissue. Silicon optrodes were fabricated by deep reactive ion etching (DRIE) and subsequent wet chemical polishing. The proposed method is feasible to reduce the sidewall roughness significantly and is able to turn the substrate material into an infrared waveguide of sufficient efficiency for infrared neural stimulation. The advantage of our approach is that the fabrication process is fully compatible with that of functional neural microelectrodes. Moreover, there is no need to add further waveguide layers on top of such devices aiming IR stimulation, which may induce less tissue trauma. Our design also facilitates the spatially controlled illumination of the tissue through integrated micromirrors and microlenses and the precise alignment of an optical fiber through an integrated guide slot. An average system efficiency of 22.1% with a Gaussian beam profile (NA=0.13) was achieved by reducing the RMS roughness of the sidewall down to 8.7nm using 1310nm wavelength illumination and coupled core diameter of 9μm. To our knowledge, this is the first investigation of the optical properties of a Michigan-type silicon microprobe aiming infrared neural stimulation at the substrate level.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2015.10.084</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Devices ; Illumination ; Infrared ; Infrared neural stimulation ; Neural probes ; Optrode ; Roughness ; Silicon ; Silicon substrates ; Silicon waveguide ; Stimulation ; Waveguides</subject><ispartof>Sensors and actuators. B, Chemical, 2016-03, Vol.224, p.676-682</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-32a33ded957225469ca7ebc15f6381191e28881836706efc26bfe4ed3ce89d673</citedby><cites>FETCH-LOGICAL-c330t-32a33ded957225469ca7ebc15f6381191e28881836706efc26bfe4ed3ce89d673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925400515305505$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Kiss, M.</creatorcontrib><creatorcontrib>Földesy, P.</creatorcontrib><creatorcontrib>Fekete, Z.</creatorcontrib><title>Optimization of a Michigan-type silicon microprobe for infrared neural stimulation</title><title>Sensors and actuators. B, Chemical</title><description>This paper presents a Michigan-type deep brain silicon optrode capable of delivering infrared light into the neural tissue. Silicon optrodes were fabricated by deep reactive ion etching (DRIE) and subsequent wet chemical polishing. The proposed method is feasible to reduce the sidewall roughness significantly and is able to turn the substrate material into an infrared waveguide of sufficient efficiency for infrared neural stimulation. The advantage of our approach is that the fabrication process is fully compatible with that of functional neural microelectrodes. Moreover, there is no need to add further waveguide layers on top of such devices aiming IR stimulation, which may induce less tissue trauma. Our design also facilitates the spatially controlled illumination of the tissue through integrated micromirrors and microlenses and the precise alignment of an optical fiber through an integrated guide slot. An average system efficiency of 22.1% with a Gaussian beam profile (NA=0.13) was achieved by reducing the RMS roughness of the sidewall down to 8.7nm using 1310nm wavelength illumination and coupled core diameter of 9μm. To our knowledge, this is the first investigation of the optical properties of a Michigan-type silicon microprobe aiming infrared neural stimulation at the substrate level.</description><subject>Devices</subject><subject>Illumination</subject><subject>Infrared</subject><subject>Infrared neural stimulation</subject><subject>Neural probes</subject><subject>Optrode</subject><subject>Roughness</subject><subject>Silicon</subject><subject>Silicon substrates</subject><subject>Silicon waveguide</subject><subject>Stimulation</subject><subject>Waveguides</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AHdZumm9adokxZUMvmBkQHQd0vRWM_Rl0grjrzfjuHZ1uY9zuOcj5JJByoCJ620a-irNgBWxT0HlR2TBlOQJBymPyQLKrEhygOKUnIWwBYCcC1iQl804uc59m8kNPR0aauizsx_u3fTJtBuRBtc6G1eds34Y_VAhbQZPXd9447GmPc7etDREl7n9dTknJ41pA1781SV5u797XT0m683D0-p2nVjOYUp4ZjivsS4LmWVFLkprJFaWFY3girGSYaaUYooLCQIbm4mqwRxrblGVtZB8Sa4OvvGrzxnDpDsXLLat6XGYg2ZSCSZKyMt4yg6nMUMIHhs9etcZv9MM9J6f3urIT-_57UeRX9TcHDQYM3w59DpYh73F2nm0k64H94_6B1A1eRc</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Kiss, M.</creator><creator>Földesy, P.</creator><creator>Fekete, Z.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160301</creationdate><title>Optimization of a Michigan-type silicon microprobe for infrared neural stimulation</title><author>Kiss, M. ; Földesy, P. ; Fekete, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-32a33ded957225469ca7ebc15f6381191e28881836706efc26bfe4ed3ce89d673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Devices</topic><topic>Illumination</topic><topic>Infrared</topic><topic>Infrared neural stimulation</topic><topic>Neural probes</topic><topic>Optrode</topic><topic>Roughness</topic><topic>Silicon</topic><topic>Silicon substrates</topic><topic>Silicon waveguide</topic><topic>Stimulation</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiss, M.</creatorcontrib><creatorcontrib>Földesy, P.</creatorcontrib><creatorcontrib>Fekete, Z.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiss, M.</au><au>Földesy, P.</au><au>Fekete, Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of a Michigan-type silicon microprobe for infrared neural stimulation</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2016-03-01</date><risdate>2016</risdate><volume>224</volume><spage>676</spage><epage>682</epage><pages>676-682</pages><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>This paper presents a Michigan-type deep brain silicon optrode capable of delivering infrared light into the neural tissue. Silicon optrodes were fabricated by deep reactive ion etching (DRIE) and subsequent wet chemical polishing. The proposed method is feasible to reduce the sidewall roughness significantly and is able to turn the substrate material into an infrared waveguide of sufficient efficiency for infrared neural stimulation. The advantage of our approach is that the fabrication process is fully compatible with that of functional neural microelectrodes. Moreover, there is no need to add further waveguide layers on top of such devices aiming IR stimulation, which may induce less tissue trauma. Our design also facilitates the spatially controlled illumination of the tissue through integrated micromirrors and microlenses and the precise alignment of an optical fiber through an integrated guide slot. An average system efficiency of 22.1% with a Gaussian beam profile (NA=0.13) was achieved by reducing the RMS roughness of the sidewall down to 8.7nm using 1310nm wavelength illumination and coupled core diameter of 9μm. To our knowledge, this is the first investigation of the optical properties of a Michigan-type silicon microprobe aiming infrared neural stimulation at the substrate level.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2015.10.084</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-4005 |
ispartof | Sensors and actuators. B, Chemical, 2016-03, Vol.224, p.676-682 |
issn | 0925-4005 1873-3077 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786169049 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Devices Illumination Infrared Infrared neural stimulation Neural probes Optrode Roughness Silicon Silicon substrates Silicon waveguide Stimulation Waveguides |
title | Optimization of a Michigan-type silicon microprobe for infrared neural stimulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A42%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20a%20Michigan-type%20silicon%20microprobe%20for%20infrared%20neural%20stimulation&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Kiss,%20M.&rft.date=2016-03-01&rft.volume=224&rft.spage=676&rft.epage=682&rft.pages=676-682&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2015.10.084&rft_dat=%3Cproquest_cross%3E1786169049%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786169049&rft_id=info:pmid/&rft_els_id=S0925400515305505&rfr_iscdi=true |