Deformation Mechanisms in Austenitic TRIP/TWIP Steel as a Function of Temperature

A high-alloy austenitic CrMnNi steel was deformed at temperatures between 213 K and 473 K (−60 °C and 200 °C) and the resulting microstructures were investigated. At low temperatures, the deformation was mainly accompanied by the direct martensitic transformation of γ-austenite to α′-martensite (fcc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2016-01, Vol.47 (1), p.49-58
Hauptverfasser: Martin, Stefan, Wolf, Steffen, Martin, Ulrich, Krüger, Lutz, Rafaja, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A high-alloy austenitic CrMnNi steel was deformed at temperatures between 213 K and 473 K (−60 °C and 200 °C) and the resulting microstructures were investigated. At low temperatures, the deformation was mainly accompanied by the direct martensitic transformation of γ-austenite to α′-martensite (fcc → bcc), whereas at ambient temperatures, the transformation via ε-martensite (fcc → hcp → bcc) was observed in deformation bands. Deformation twinning of the austenite became the dominant deformation mechanism at 373 K (100 °C), whereas the conventional dislocation glide represented the prevailing deformation mode at 473 K (200 °C). The change of the deformation mechanisms was attributed to the temperature dependence of both the driving force of the martensitic γ → α′ transformation and the stacking fault energy of the austenite. The continuous transition between the ε-martensite formation and the twinning could be explained by different stacking fault arrangements on every second and on each successive {111} austenite lattice plane, respectively, when the stacking fault energy increased. A continuous transition between the transformation-induced plasticity effect and the twinning-induced plasticity effect was observed with increasing deformation temperature. Whereas the formation of α′-martensite was mainly responsible for increased work hardening, the stacking fault configurations forming ε-martensite and twins induced additional elongation during tensile testing.
ISSN:1073-5623
1543-1940
DOI:10.1007/s11661-014-2684-4