Characterization of a 75 kg multicrystalline Si ingot grown in a KRISTMAG®-type G2-sized directional solidification furnace
A 75 kg solar-grade boron-doped silicon (Si) ingot has been directionally solidified in a Vertical Gradient Freeze (VGF)-type G2-sized furnace equipped with KRISTMAG(R) Heater Magnet Module (HMM). Alternating Magnetic Fields (AMFs) were used to enhance melt stirring and to control the growth interfa...
Gespeichert in:
Veröffentlicht in: | Solar energy materials and solar cells 2014-11, Vol.130, p.652-660 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 660 |
---|---|
container_issue | |
container_start_page | 652 |
container_title | Solar energy materials and solar cells |
container_volume | 130 |
creator | LINKE, D DROPKA, N KIESSLING, F. M KONIG, M KRAUSE, J LANGE, R.-P SONTAG, D |
description | A 75 kg solar-grade boron-doped silicon (Si) ingot has been directionally solidified in a Vertical Gradient Freeze (VGF)-type G2-sized furnace equipped with KRISTMAG(R) Heater Magnet Module (HMM). Alternating Magnetic Fields (AMFs) were used to enhance melt stirring and to control the growth interface morphology and shape. This as-grown multicrystalline (mc>silicon ingot of 384 x 384 x 230 mm super(3) in volume was cut into 4 bricks and in Vertical Cuts (VC) to analyze the material and to produce solar cells. Numerical simulations have been performed in order to optimize mass transport processes. Information about the curvature of the liquid-solid interface, the distribution of carbon (C) and oxygen (O), the content of Silicon Carbide (SiC) and Silicon Nitride (Si sub(3)N sub(4))-particles and the electrical activity of defects were obtained from the ingot core. Except for the last-to-freeze part, a primarily inclusion-free ingot was solidified. Minority carrier lifetimes of [tau]~4 [mu]s were measured on the grinded as-cut surface. The concentrations of C and O were determined by Fourier Transform Infrared (FTIR) spectroscopy to (0.4-7.9) x 10 super(17) atoms/cm super(3) and (0.3-5.4) x 10 super(17) atoms/cm super(3), respectively. Solar cells were produced from wafers at the Meyer Burger Roth & Rau Technology and Research Centre using the Meyer Burger Roth & Rau Passivated Emitter Rear Cell (PERC) process. Solar cell efficiencies were achieved between 17.7% and 18.0%. |
doi_str_mv | 10.1016/j.solmat.2014.04.028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786166349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786166349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-32dd763ddf97070c3e8a2f743333e952235d33912ec8e7a4258af04fb6c1f96f3</originalsourceid><addsrcrecordid>eNqNUU1rGzEQFaWBumn-QQ-6BHpZR18raY_BtI5JSqFJzmKilVw58q4ryQSH_Kb8iPyyyNj03OHBzOHNvJl5CH2lZEoJlReraR7jGsqUESqmpILpD2hCteoazjv9EU1Ix1RDmNCf0OecV4QQJrmYoJfZH0hgi0vhGUoYBzx6DFi1-HGJ19tYgk27XCDGMDh8G3AYlmPByzQ-DbWu1Ovfi9u7n5fzt9em7DYOz1mTw7PrcR-Ss_uREHHdL_TBB3vQ8Ns0gHVf0ImHmN3ZMZ-i-x_f72ZXzc2v-WJ2edNYQVVpOOt7JXnf-04RRSx3GphXgtdwXcsYb_t6JmXOaqdAsFaDJ8I_SEt9Jz0_Rd8Oczdp_Lt1uZh1yNbFCIMbt9lQpSWV9R_df1Al40pKpipVHKg2jTkn580mhTWknaHE7H0xK3Pwxex9MaSC6dp2flSAbCH6BIMN-V8v07rVQnf8HQLBkOI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762376627</pqid></control><display><type>article</type><title>Characterization of a 75 kg multicrystalline Si ingot grown in a KRISTMAG®-type G2-sized directional solidification furnace</title><source>Elsevier ScienceDirect Journals</source><creator>LINKE, D ; DROPKA, N ; KIESSLING, F. M ; KONIG, M ; KRAUSE, J ; LANGE, R.-P ; SONTAG, D</creator><creatorcontrib>LINKE, D ; DROPKA, N ; KIESSLING, F. M ; KONIG, M ; KRAUSE, J ; LANGE, R.-P ; SONTAG, D</creatorcontrib><description>A 75 kg solar-grade boron-doped silicon (Si) ingot has been directionally solidified in a Vertical Gradient Freeze (VGF)-type G2-sized furnace equipped with KRISTMAG(R) Heater Magnet Module (HMM). Alternating Magnetic Fields (AMFs) were used to enhance melt stirring and to control the growth interface morphology and shape. This as-grown multicrystalline (mc>silicon ingot of 384 x 384 x 230 mm super(3) in volume was cut into 4 bricks and in Vertical Cuts (VC) to analyze the material and to produce solar cells. Numerical simulations have been performed in order to optimize mass transport processes. Information about the curvature of the liquid-solid interface, the distribution of carbon (C) and oxygen (O), the content of Silicon Carbide (SiC) and Silicon Nitride (Si sub(3)N sub(4))-particles and the electrical activity of defects were obtained from the ingot core. Except for the last-to-freeze part, a primarily inclusion-free ingot was solidified. Minority carrier lifetimes of [tau]~4 [mu]s were measured on the grinded as-cut surface. The concentrations of C and O were determined by Fourier Transform Infrared (FTIR) spectroscopy to (0.4-7.9) x 10 super(17) atoms/cm super(3) and (0.3-5.4) x 10 super(17) atoms/cm super(3), respectively. Solar cells were produced from wafers at the Meyer Burger Roth & Rau Technology and Research Centre using the Meyer Burger Roth & Rau Passivated Emitter Rear Cell (PERC) process. Solar cell efficiencies were achieved between 17.7% and 18.0%.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2014.04.028</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Applied sciences ; Atomic beam spectroscopy ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electromagnets ; Energy ; Exact sciences and technology ; Fourier transforms ; Furnaces ; Ingots ; Miscellaneous ; Natural energy ; Photoelectric conversion ; Photovoltaic cells ; Photovoltaic conversion ; Silicon ; Silicon carbide ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar energy ; Various equipment and components</subject><ispartof>Solar energy materials and solar cells, 2014-11, Vol.130, p.652-660</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-32dd763ddf97070c3e8a2f743333e952235d33912ec8e7a4258af04fb6c1f96f3</citedby><cites>FETCH-LOGICAL-c417t-32dd763ddf97070c3e8a2f743333e952235d33912ec8e7a4258af04fb6c1f96f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28858489$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LINKE, D</creatorcontrib><creatorcontrib>DROPKA, N</creatorcontrib><creatorcontrib>KIESSLING, F. M</creatorcontrib><creatorcontrib>KONIG, M</creatorcontrib><creatorcontrib>KRAUSE, J</creatorcontrib><creatorcontrib>LANGE, R.-P</creatorcontrib><creatorcontrib>SONTAG, D</creatorcontrib><title>Characterization of a 75 kg multicrystalline Si ingot grown in a KRISTMAG®-type G2-sized directional solidification furnace</title><title>Solar energy materials and solar cells</title><description>A 75 kg solar-grade boron-doped silicon (Si) ingot has been directionally solidified in a Vertical Gradient Freeze (VGF)-type G2-sized furnace equipped with KRISTMAG(R) Heater Magnet Module (HMM). Alternating Magnetic Fields (AMFs) were used to enhance melt stirring and to control the growth interface morphology and shape. This as-grown multicrystalline (mc>silicon ingot of 384 x 384 x 230 mm super(3) in volume was cut into 4 bricks and in Vertical Cuts (VC) to analyze the material and to produce solar cells. Numerical simulations have been performed in order to optimize mass transport processes. Information about the curvature of the liquid-solid interface, the distribution of carbon (C) and oxygen (O), the content of Silicon Carbide (SiC) and Silicon Nitride (Si sub(3)N sub(4))-particles and the electrical activity of defects were obtained from the ingot core. Except for the last-to-freeze part, a primarily inclusion-free ingot was solidified. Minority carrier lifetimes of [tau]~4 [mu]s were measured on the grinded as-cut surface. The concentrations of C and O were determined by Fourier Transform Infrared (FTIR) spectroscopy to (0.4-7.9) x 10 super(17) atoms/cm super(3) and (0.3-5.4) x 10 super(17) atoms/cm super(3), respectively. Solar cells were produced from wafers at the Meyer Burger Roth & Rau Technology and Research Centre using the Meyer Burger Roth & Rau Passivated Emitter Rear Cell (PERC) process. Solar cell efficiencies were achieved between 17.7% and 18.0%.</description><subject>Applied sciences</subject><subject>Atomic beam spectroscopy</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electromagnets</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fourier transforms</subject><subject>Furnaces</subject><subject>Ingots</subject><subject>Miscellaneous</subject><subject>Natural energy</subject><subject>Photoelectric conversion</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Silicon</subject><subject>Silicon carbide</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Various equipment and components</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNUU1rGzEQFaWBumn-QQ-6BHpZR18raY_BtI5JSqFJzmKilVw58q4ryQSH_Kb8iPyyyNj03OHBzOHNvJl5CH2lZEoJlReraR7jGsqUESqmpILpD2hCteoazjv9EU1Ix1RDmNCf0OecV4QQJrmYoJfZH0hgi0vhGUoYBzx6DFi1-HGJ19tYgk27XCDGMDh8G3AYlmPByzQ-DbWu1Ovfi9u7n5fzt9em7DYOz1mTw7PrcR-Ss_uREHHdL_TBB3vQ8Ns0gHVf0ImHmN3ZMZ-i-x_f72ZXzc2v-WJ2edNYQVVpOOt7JXnf-04RRSx3GphXgtdwXcsYb_t6JmXOaqdAsFaDJ8I_SEt9Jz0_Rd8Oczdp_Lt1uZh1yNbFCIMbt9lQpSWV9R_df1Al40pKpipVHKg2jTkn580mhTWknaHE7H0xK3Pwxex9MaSC6dp2flSAbCH6BIMN-V8v07rVQnf8HQLBkOI</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>LINKE, D</creator><creator>DROPKA, N</creator><creator>KIESSLING, F. M</creator><creator>KONIG, M</creator><creator>KRAUSE, J</creator><creator>LANGE, R.-P</creator><creator>SONTAG, D</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20141101</creationdate><title>Characterization of a 75 kg multicrystalline Si ingot grown in a KRISTMAG®-type G2-sized directional solidification furnace</title><author>LINKE, D ; DROPKA, N ; KIESSLING, F. M ; KONIG, M ; KRAUSE, J ; LANGE, R.-P ; SONTAG, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-32dd763ddf97070c3e8a2f743333e952235d33912ec8e7a4258af04fb6c1f96f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Atomic beam spectroscopy</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electromagnets</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fourier transforms</topic><topic>Furnaces</topic><topic>Ingots</topic><topic>Miscellaneous</topic><topic>Natural energy</topic><topic>Photoelectric conversion</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Silicon</topic><topic>Silicon carbide</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Various equipment and components</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LINKE, D</creatorcontrib><creatorcontrib>DROPKA, N</creatorcontrib><creatorcontrib>KIESSLING, F. M</creatorcontrib><creatorcontrib>KONIG, M</creatorcontrib><creatorcontrib>KRAUSE, J</creatorcontrib><creatorcontrib>LANGE, R.-P</creatorcontrib><creatorcontrib>SONTAG, D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LINKE, D</au><au>DROPKA, N</au><au>KIESSLING, F. M</au><au>KONIG, M</au><au>KRAUSE, J</au><au>LANGE, R.-P</au><au>SONTAG, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of a 75 kg multicrystalline Si ingot grown in a KRISTMAG®-type G2-sized directional solidification furnace</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2014-11-01</date><risdate>2014</risdate><volume>130</volume><spage>652</spage><epage>660</epage><pages>652-660</pages><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>A 75 kg solar-grade boron-doped silicon (Si) ingot has been directionally solidified in a Vertical Gradient Freeze (VGF)-type G2-sized furnace equipped with KRISTMAG(R) Heater Magnet Module (HMM). Alternating Magnetic Fields (AMFs) were used to enhance melt stirring and to control the growth interface morphology and shape. This as-grown multicrystalline (mc>silicon ingot of 384 x 384 x 230 mm super(3) in volume was cut into 4 bricks and in Vertical Cuts (VC) to analyze the material and to produce solar cells. Numerical simulations have been performed in order to optimize mass transport processes. Information about the curvature of the liquid-solid interface, the distribution of carbon (C) and oxygen (O), the content of Silicon Carbide (SiC) and Silicon Nitride (Si sub(3)N sub(4))-particles and the electrical activity of defects were obtained from the ingot core. Except for the last-to-freeze part, a primarily inclusion-free ingot was solidified. Minority carrier lifetimes of [tau]~4 [mu]s were measured on the grinded as-cut surface. The concentrations of C and O were determined by Fourier Transform Infrared (FTIR) spectroscopy to (0.4-7.9) x 10 super(17) atoms/cm super(3) and (0.3-5.4) x 10 super(17) atoms/cm super(3), respectively. Solar cells were produced from wafers at the Meyer Burger Roth & Rau Technology and Research Centre using the Meyer Burger Roth & Rau Passivated Emitter Rear Cell (PERC) process. Solar cell efficiencies were achieved between 17.7% and 18.0%.</abstract><cop>Amsterdam</cop><pub>Elsevier</pub><doi>10.1016/j.solmat.2014.04.028</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2014-11, Vol.130, p.652-660 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786166349 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Atomic beam spectroscopy Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electromagnets Energy Exact sciences and technology Fourier transforms Furnaces Ingots Miscellaneous Natural energy Photoelectric conversion Photovoltaic cells Photovoltaic conversion Silicon Silicon carbide Solar cells Solar cells. Photoelectrochemical cells Solar energy Various equipment and components |
title | Characterization of a 75 kg multicrystalline Si ingot grown in a KRISTMAG®-type G2-sized directional solidification furnace |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A48%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20a%2075%20kg%20multicrystalline%20Si%20ingot%20grown%20in%20a%20KRISTMAG%C2%AE-type%20G2-sized%20directional%20solidification%20furnace&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=LINKE,%20D&rft.date=2014-11-01&rft.volume=130&rft.spage=652&rft.epage=660&rft.pages=652-660&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2014.04.028&rft_dat=%3Cproquest_cross%3E1786166349%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762376627&rft_id=info:pmid/&rfr_iscdi=true |