Efficient approach for reliability-based optimization based on weighted importance sampling approach

An efficient methodology is presented to perform the reliability-based optimization (RBO). It is based on an efficient weighted approach for constructing an approximation of the failure probability as an explicit function of the design variables which is referred to as the ‘failure probability funct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reliability engineering & system safety 2014-12, Vol.132, p.107-114
Hauptverfasser: Yuan, Xiukai, Lu, Zhenzhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114
container_issue
container_start_page 107
container_title Reliability engineering & system safety
container_volume 132
creator Yuan, Xiukai
Lu, Zhenzhou
description An efficient methodology is presented to perform the reliability-based optimization (RBO). It is based on an efficient weighted approach for constructing an approximation of the failure probability as an explicit function of the design variables which is referred to as the ‘failure probability function (FPF)’. It expresses the FPF as a weighted sum of sample values obtained in the simulation-based reliability analysis. The required computational effort for decoupling in each iteration is just single reliability analysis. After the approximation of the FPF is established, the target RBO problem can be decoupled into a deterministic one. Meanwhile, the proposed weighted approach is combined with a decoupling approach and a sequential approximate optimization framework. Engineering examples are given to demonstrate the efficiency and accuracy of the presented methodology.
doi_str_mv 10.1016/j.ress.2014.06.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786166334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0951832014001458</els_id><sourcerecordid>1786166334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-7c0160a32d4b33356b4294506de917921ef27b15f32c74566f174d0db8192c003</originalsourceid><addsrcrecordid>eNqNkctuFTEMhiMEEofCC7CaDRKbmTrJ5DISG1S1gFSJDayjTMZpfTQ3khRUnp4ZnaMuUVe2rN-_7c-MvefQcOD68tgkzLkRwNsGdANcvWAHbk1Xg5X6JTtAp3htpYDX7E3ORwBoO2UObLiOkQLhXCq_rmnx4b6KS6oSjuR7Gqk81r3POFTLWmiiv77QMlfn0lz9Qbq7L1tO07qk4ueAVfbTOtJ89-T4lr2Kfsz47hwv2M-b6x9XX-vb71--XX2-rYPsdKlN2E4BL8XQ9lJKpftWdK0CPWDHTSc4RmF6rqIUwbRK68hNO8DQW96JACAv2MeT7zb21wPm4ibKAcfRz7g8ZMeN1VxrKdtnSLWQShltN6k4SUNack4Y3Zpo8unRcXA7fXd0O32303eg3UZ_a_pw9vc5-DGmjQzlp05hLVgu9j0-nXS4cflNmFzevxFwoIShuGGh_435BxnjmwE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762355768</pqid></control><display><type>article</type><title>Efficient approach for reliability-based optimization based on weighted importance sampling approach</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yuan, Xiukai ; Lu, Zhenzhou</creator><creatorcontrib>Yuan, Xiukai ; Lu, Zhenzhou</creatorcontrib><description>An efficient methodology is presented to perform the reliability-based optimization (RBO). It is based on an efficient weighted approach for constructing an approximation of the failure probability as an explicit function of the design variables which is referred to as the ‘failure probability function (FPF)’. It expresses the FPF as a weighted sum of sample values obtained in the simulation-based reliability analysis. The required computational effort for decoupling in each iteration is just single reliability analysis. After the approximation of the FPF is established, the target RBO problem can be decoupled into a deterministic one. Meanwhile, the proposed weighted approach is combined with a decoupling approach and a sequential approximate optimization framework. Engineering examples are given to demonstrate the efficiency and accuracy of the presented methodology.</description><identifier>ISSN: 0951-8320</identifier><identifier>EISSN: 1879-0836</identifier><identifier>DOI: 10.1016/j.ress.2014.06.015</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Approximation ; Decoupling ; Exact sciences and technology ; Failure ; Importance sampling ; Mathematical analysis ; Mathematical models ; Mathematics ; Methodology ; Monte Carlo simulation ; Operational research and scientific management ; Operational research. Management science ; Optimization ; Probability and statistics ; Reliability analysis ; Reliability theory. Replacement problems ; Reliability-based optimization ; Sampling theory, sample surveys ; Sciences and techniques of general use ; Statistics</subject><ispartof>Reliability engineering &amp; system safety, 2014-12, Vol.132, p.107-114</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-7c0160a32d4b33356b4294506de917921ef27b15f32c74566f174d0db8192c003</citedby><cites>FETCH-LOGICAL-c396t-7c0160a32d4b33356b4294506de917921ef27b15f32c74566f174d0db8192c003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ress.2014.06.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28808124$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Xiukai</creatorcontrib><creatorcontrib>Lu, Zhenzhou</creatorcontrib><title>Efficient approach for reliability-based optimization based on weighted importance sampling approach</title><title>Reliability engineering &amp; system safety</title><description>An efficient methodology is presented to perform the reliability-based optimization (RBO). It is based on an efficient weighted approach for constructing an approximation of the failure probability as an explicit function of the design variables which is referred to as the ‘failure probability function (FPF)’. It expresses the FPF as a weighted sum of sample values obtained in the simulation-based reliability analysis. The required computational effort for decoupling in each iteration is just single reliability analysis. After the approximation of the FPF is established, the target RBO problem can be decoupled into a deterministic one. Meanwhile, the proposed weighted approach is combined with a decoupling approach and a sequential approximate optimization framework. Engineering examples are given to demonstrate the efficiency and accuracy of the presented methodology.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Decoupling</subject><subject>Exact sciences and technology</subject><subject>Failure</subject><subject>Importance sampling</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Methodology</subject><subject>Monte Carlo simulation</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization</subject><subject>Probability and statistics</subject><subject>Reliability analysis</subject><subject>Reliability theory. Replacement problems</subject><subject>Reliability-based optimization</subject><subject>Sampling theory, sample surveys</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0951-8320</issn><issn>1879-0836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkctuFTEMhiMEEofCC7CaDRKbmTrJ5DISG1S1gFSJDayjTMZpfTQ3khRUnp4ZnaMuUVe2rN-_7c-MvefQcOD68tgkzLkRwNsGdANcvWAHbk1Xg5X6JTtAp3htpYDX7E3ORwBoO2UObLiOkQLhXCq_rmnx4b6KS6oSjuR7Gqk81r3POFTLWmiiv77QMlfn0lz9Qbq7L1tO07qk4ueAVfbTOtJ89-T4lr2Kfsz47hwv2M-b6x9XX-vb71--XX2-rYPsdKlN2E4BL8XQ9lJKpftWdK0CPWDHTSc4RmF6rqIUwbRK68hNO8DQW96JACAv2MeT7zb21wPm4ibKAcfRz7g8ZMeN1VxrKdtnSLWQShltN6k4SUNack4Y3Zpo8unRcXA7fXd0O32303eg3UZ_a_pw9vc5-DGmjQzlp05hLVgu9j0-nXS4cflNmFzevxFwoIShuGGh_435BxnjmwE</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Yuan, Xiukai</creator><creator>Lu, Zhenzhou</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7U2</scope><scope>C1K</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20141201</creationdate><title>Efficient approach for reliability-based optimization based on weighted importance sampling approach</title><author>Yuan, Xiukai ; Lu, Zhenzhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-7c0160a32d4b33356b4294506de917921ef27b15f32c74566f174d0db8192c003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Decoupling</topic><topic>Exact sciences and technology</topic><topic>Failure</topic><topic>Importance sampling</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Methodology</topic><topic>Monte Carlo simulation</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization</topic><topic>Probability and statistics</topic><topic>Reliability analysis</topic><topic>Reliability theory. Replacement problems</topic><topic>Reliability-based optimization</topic><topic>Sampling theory, sample surveys</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Xiukai</creatorcontrib><creatorcontrib>Lu, Zhenzhou</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Reliability engineering &amp; system safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Xiukai</au><au>Lu, Zhenzhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient approach for reliability-based optimization based on weighted importance sampling approach</atitle><jtitle>Reliability engineering &amp; system safety</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>132</volume><spage>107</spage><epage>114</epage><pages>107-114</pages><issn>0951-8320</issn><eissn>1879-0836</eissn><abstract>An efficient methodology is presented to perform the reliability-based optimization (RBO). It is based on an efficient weighted approach for constructing an approximation of the failure probability as an explicit function of the design variables which is referred to as the ‘failure probability function (FPF)’. It expresses the FPF as a weighted sum of sample values obtained in the simulation-based reliability analysis. The required computational effort for decoupling in each iteration is just single reliability analysis. After the approximation of the FPF is established, the target RBO problem can be decoupled into a deterministic one. Meanwhile, the proposed weighted approach is combined with a decoupling approach and a sequential approximate optimization framework. Engineering examples are given to demonstrate the efficiency and accuracy of the presented methodology.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ress.2014.06.015</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0951-8320
ispartof Reliability engineering & system safety, 2014-12, Vol.132, p.107-114
issn 0951-8320
1879-0836
language eng
recordid cdi_proquest_miscellaneous_1786166334
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Approximation
Decoupling
Exact sciences and technology
Failure
Importance sampling
Mathematical analysis
Mathematical models
Mathematics
Methodology
Monte Carlo simulation
Operational research and scientific management
Operational research. Management science
Optimization
Probability and statistics
Reliability analysis
Reliability theory. Replacement problems
Reliability-based optimization
Sampling theory, sample surveys
Sciences and techniques of general use
Statistics
title Efficient approach for reliability-based optimization based on weighted importance sampling approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A20%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20approach%20for%20reliability-based%20optimization%20based%20on%20weighted%20importance%20sampling%20approach&rft.jtitle=Reliability%20engineering%20&%20system%20safety&rft.au=Yuan,%20Xiukai&rft.date=2014-12-01&rft.volume=132&rft.spage=107&rft.epage=114&rft.pages=107-114&rft.issn=0951-8320&rft.eissn=1879-0836&rft_id=info:doi/10.1016/j.ress.2014.06.015&rft_dat=%3Cproquest_cross%3E1786166334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762355768&rft_id=info:pmid/&rft_els_id=S0951832014001458&rfr_iscdi=true