A ratiometric NMR pH sensing strategy based on a slow-proton-exchange (SPE) mechanism

Real time and non-invasive detection of pH in live biological systems is crucial for understanding the physiological role of acid-base homeostasis and for detecting pathological conditions associated with pH imbalance. One method to achieve pH monitoring is NMR. Conventional NMR methods, however, ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2015-11, Vol.6 (11), p.6305-6311
Hauptverfasser: Perruchoud, L H, Jones, M D, Sutrisno, A, Zamble, D B, Simpson, A J, Zhang, X-A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6311
container_issue 11
container_start_page 6305
container_title Chemical science (Cambridge)
container_volume 6
creator Perruchoud, L H
Jones, M D
Sutrisno, A
Zamble, D B
Simpson, A J
Zhang, X-A
description Real time and non-invasive detection of pH in live biological systems is crucial for understanding the physiological role of acid-base homeostasis and for detecting pathological conditions associated with pH imbalance. One method to achieve pH monitoring is NMR. Conventional NMR methods, however, mainly utilize molecular sensors displaying pH-dependent chemical shift changes, which are vulnerable to multiple pH-independent factors. Here, we present a novel ratiometric strategy for sensitive and accurate pH sensing based on a small synthetic molecule, , which exhibits exceptionally slow proton exchange on the NMR time scale. Each protonation state of the sensor displays distinct NMR signals and the ratio of these signals affords precise pH values. In contrast to standard NMR methods, this ratiometric mechanism is not based on a chemical shift change, and binds protons with high selectivity, resulting in accurate measurements. was used to measure the pH in a single oocyte as well as in bacterial cultures, demonstrating the versatility of this method and establishing the foundation for broad biological applications.
doi_str_mv 10.1039/c5sc02145f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786165502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786165502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-989a11110dda89a7459f9b54ed9841b8a8613cb67dc993523ae279d32fc4a00e3</originalsourceid><addsrcrecordid>eNo9kFtPwkAQhTdGIwR58QeYfUST6l66bfeRNCAmeInIc7PdTrGmF-yUIP_eRZDzMmcyX04mh5Brzu45k_rBKrRMcF_lZ6QvmM-9QEl9fvKC9cgQ8Ys5ScmVCC9JTzKmmfCjPlmOaWu6oqmgawtLX57f6XpGEWos6hXFzh1htaOpQchoU1NDsWy23rptuqb24Md-mnoFdLR4m9zSCvZrgdUVuchNiTA8zgFZTicf8cybvz4-xeO5Z6UKOk9H2nAnlmXG2dBXOtep8iHTkc_TyEQBlzYNwsxqLZWQBkSoMyly6xvGQA7I6JDr_vneAHZJVaCFsjQ1NBtMeOgSAqWYcOjdAbVtg9hCnqzbojLtLuEs2TeZxGoR_zU5dfDNMXeTVpCd0P_e5C-xcWxC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786165502</pqid></control><display><type>article</type><title>A ratiometric NMR pH sensing strategy based on a slow-proton-exchange (SPE) mechanism</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Perruchoud, L H ; Jones, M D ; Sutrisno, A ; Zamble, D B ; Simpson, A J ; Zhang, X-A</creator><creatorcontrib>Perruchoud, L H ; Jones, M D ; Sutrisno, A ; Zamble, D B ; Simpson, A J ; Zhang, X-A</creatorcontrib><description>Real time and non-invasive detection of pH in live biological systems is crucial for understanding the physiological role of acid-base homeostasis and for detecting pathological conditions associated with pH imbalance. One method to achieve pH monitoring is NMR. Conventional NMR methods, however, mainly utilize molecular sensors displaying pH-dependent chemical shift changes, which are vulnerable to multiple pH-independent factors. Here, we present a novel ratiometric strategy for sensitive and accurate pH sensing based on a small synthetic molecule, , which exhibits exceptionally slow proton exchange on the NMR time scale. Each protonation state of the sensor displays distinct NMR signals and the ratio of these signals affords precise pH values. In contrast to standard NMR methods, this ratiometric mechanism is not based on a chemical shift change, and binds protons with high selectivity, resulting in accurate measurements. was used to measure the pH in a single oocyte as well as in bacterial cultures, demonstrating the versatility of this method and establishing the foundation for broad biological applications.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c5sc02145f</identifier><identifier>PMID: 30090248</identifier><language>eng</language><publisher>England</publisher><subject>Bacteria ; Biological ; Detection ; Exchange ; Homeostasis ; Nuclear magnetic resonance ; Strategy</subject><ispartof>Chemical science (Cambridge), 2015-11, Vol.6 (11), p.6305-6311</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-989a11110dda89a7459f9b54ed9841b8a8613cb67dc993523ae279d32fc4a00e3</citedby><cites>FETCH-LOGICAL-c356t-989a11110dda89a7459f9b54ed9841b8a8613cb67dc993523ae279d32fc4a00e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30090248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perruchoud, L H</creatorcontrib><creatorcontrib>Jones, M D</creatorcontrib><creatorcontrib>Sutrisno, A</creatorcontrib><creatorcontrib>Zamble, D B</creatorcontrib><creatorcontrib>Simpson, A J</creatorcontrib><creatorcontrib>Zhang, X-A</creatorcontrib><title>A ratiometric NMR pH sensing strategy based on a slow-proton-exchange (SPE) mechanism</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Real time and non-invasive detection of pH in live biological systems is crucial for understanding the physiological role of acid-base homeostasis and for detecting pathological conditions associated with pH imbalance. One method to achieve pH monitoring is NMR. Conventional NMR methods, however, mainly utilize molecular sensors displaying pH-dependent chemical shift changes, which are vulnerable to multiple pH-independent factors. Here, we present a novel ratiometric strategy for sensitive and accurate pH sensing based on a small synthetic molecule, , which exhibits exceptionally slow proton exchange on the NMR time scale. Each protonation state of the sensor displays distinct NMR signals and the ratio of these signals affords precise pH values. In contrast to standard NMR methods, this ratiometric mechanism is not based on a chemical shift change, and binds protons with high selectivity, resulting in accurate measurements. was used to measure the pH in a single oocyte as well as in bacterial cultures, demonstrating the versatility of this method and establishing the foundation for broad biological applications.</description><subject>Bacteria</subject><subject>Biological</subject><subject>Detection</subject><subject>Exchange</subject><subject>Homeostasis</subject><subject>Nuclear magnetic resonance</subject><subject>Strategy</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kFtPwkAQhTdGIwR58QeYfUST6l66bfeRNCAmeInIc7PdTrGmF-yUIP_eRZDzMmcyX04mh5Brzu45k_rBKrRMcF_lZ6QvmM-9QEl9fvKC9cgQ8Ys5ScmVCC9JTzKmmfCjPlmOaWu6oqmgawtLX57f6XpGEWos6hXFzh1htaOpQchoU1NDsWy23rptuqb24Md-mnoFdLR4m9zSCvZrgdUVuchNiTA8zgFZTicf8cybvz4-xeO5Z6UKOk9H2nAnlmXG2dBXOtep8iHTkc_TyEQBlzYNwsxqLZWQBkSoMyly6xvGQA7I6JDr_vneAHZJVaCFsjQ1NBtMeOgSAqWYcOjdAbVtg9hCnqzbojLtLuEs2TeZxGoR_zU5dfDNMXeTVpCd0P_e5C-xcWxC</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Perruchoud, L H</creator><creator>Jones, M D</creator><creator>Sutrisno, A</creator><creator>Zamble, D B</creator><creator>Simpson, A J</creator><creator>Zhang, X-A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20151101</creationdate><title>A ratiometric NMR pH sensing strategy based on a slow-proton-exchange (SPE) mechanism</title><author>Perruchoud, L H ; Jones, M D ; Sutrisno, A ; Zamble, D B ; Simpson, A J ; Zhang, X-A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-989a11110dda89a7459f9b54ed9841b8a8613cb67dc993523ae279d32fc4a00e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bacteria</topic><topic>Biological</topic><topic>Detection</topic><topic>Exchange</topic><topic>Homeostasis</topic><topic>Nuclear magnetic resonance</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perruchoud, L H</creatorcontrib><creatorcontrib>Jones, M D</creatorcontrib><creatorcontrib>Sutrisno, A</creatorcontrib><creatorcontrib>Zamble, D B</creatorcontrib><creatorcontrib>Simpson, A J</creatorcontrib><creatorcontrib>Zhang, X-A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perruchoud, L H</au><au>Jones, M D</au><au>Sutrisno, A</au><au>Zamble, D B</au><au>Simpson, A J</au><au>Zhang, X-A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A ratiometric NMR pH sensing strategy based on a slow-proton-exchange (SPE) mechanism</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>6</volume><issue>11</issue><spage>6305</spage><epage>6311</epage><pages>6305-6311</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Real time and non-invasive detection of pH in live biological systems is crucial for understanding the physiological role of acid-base homeostasis and for detecting pathological conditions associated with pH imbalance. One method to achieve pH monitoring is NMR. Conventional NMR methods, however, mainly utilize molecular sensors displaying pH-dependent chemical shift changes, which are vulnerable to multiple pH-independent factors. Here, we present a novel ratiometric strategy for sensitive and accurate pH sensing based on a small synthetic molecule, , which exhibits exceptionally slow proton exchange on the NMR time scale. Each protonation state of the sensor displays distinct NMR signals and the ratio of these signals affords precise pH values. In contrast to standard NMR methods, this ratiometric mechanism is not based on a chemical shift change, and binds protons with high selectivity, resulting in accurate measurements. was used to measure the pH in a single oocyte as well as in bacterial cultures, demonstrating the versatility of this method and establishing the foundation for broad biological applications.</abstract><cop>England</cop><pmid>30090248</pmid><doi>10.1039/c5sc02145f</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2015-11, Vol.6 (11), p.6305-6311
issn 2041-6520
2041-6539
language eng
recordid cdi_proquest_miscellaneous_1786165502
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Bacteria
Biological
Detection
Exchange
Homeostasis
Nuclear magnetic resonance
Strategy
title A ratiometric NMR pH sensing strategy based on a slow-proton-exchange (SPE) mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A22%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20ratiometric%20NMR%20pH%20sensing%20strategy%20based%20on%20a%20slow-proton-exchange%20(SPE)%20mechanism&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Perruchoud,%20L%20H&rft.date=2015-11-01&rft.volume=6&rft.issue=11&rft.spage=6305&rft.epage=6311&rft.pages=6305-6311&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c5sc02145f&rft_dat=%3Cproquest_cross%3E1786165502%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786165502&rft_id=info:pmid/30090248&rfr_iscdi=true