Sorption of Ni(II) by Fe(II) and EDTA-modified activated carbon derived from pyrophosphoric acid activation

Activated carbon (LSAC) was obtained from lotus stalk by pyrophosphoric acid activation. The LSAC was modified by FeCl2 and Na2EDTA (Fe–EDTA/LSAC) to enhance its ability for Ni(II) sorption from aqueous solutions. The activated carbons were characterized by N2 adsorption and desorption isotherms, Fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Desalination and water treatment 2016-02, Vol.57 (8), p.3700-3707
Hauptverfasser: Wang, Jing, Wang, Yan, Liu, Hai, Zhang, Jian, Zhang, Chenglu, Wang, Jinhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3707
container_issue 8
container_start_page 3700
container_title Desalination and water treatment
container_volume 57
creator Wang, Jing
Wang, Yan
Liu, Hai
Zhang, Jian
Zhang, Chenglu
Wang, Jinhe
description Activated carbon (LSAC) was obtained from lotus stalk by pyrophosphoric acid activation. The LSAC was modified by FeCl2 and Na2EDTA (Fe–EDTA/LSAC) to enhance its ability for Ni(II) sorption from aqueous solutions. The activated carbons were characterized by N2 adsorption and desorption isotherms, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction. The sorption of Ni(II) from aqueous solution onto the LSAC and Fe-EDTA/LSAC under various conditions of dosage, contact time, initial solution pH, initial Ni(II) concentration, and ionic strength was investigated to illustrate the mechanism and to quantify the sorption parameters. LSAC and Fe-EDTA/LSAC were mainly microporous with pores almost less than 4 nm. Although the surface area of LSAC (824 m2 g−1) was much higher than that of Fe–EDTA/LSAC (445 m2/g), the Ni(II) sorption capacity of Fe–EDTA/LSAC was larger than that of LSAC. The pH and ionic strength studies indicated that the main Ni(II) sorption mechanisms by the carbons were electrostatic attraction and cation exchange. The kinetics and equilibrium data agreed well with the pseudo-second-order kinetics model and Langmuir isotherm model.
doi_str_mv 10.1080/19443994.2014.989917
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786163973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1944398624040359</els_id><sourcerecordid>1762376501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-5115c89a38d9115ee68744b3b7e8ce8f3f4e63dc42c90902f3a3451831fe7f373</originalsourceid><addsrcrecordid>eNqNkc1KAzEUhQdRsGjfwMWAm7qYmkySSbIRxN9C0YV1HdLMDaa2kzGZFvr2po6KuBADISeX79yQe7LsBKMxRgKdY0kpkZKOS4TpWAopMd_LBrtyQaSo9n_ow2wY4wKlxShntBxkr08-tJ3zTe5t_uBGk8lZPt_mt_ChdFPnN9ezy2Lla2cd1Lk2ndvoLimjwzzZaghuk642-FXeboNvX3xMOziTYPftSE8cZwdWLyMMP8-j7Pn2ZnZ1X0wf7yZXl9PCUI66gmHMjJCaiFomCVAJTumczDkIA8ISS6EitaGlkUii0hJNKMOCYAvcEk6OslHftw3-bQ2xUysXDSyXugG_jgpzUeGKSE7-gVYl4RVDOKGnv9CFX4cmfSRRjAnMCGKJoj1lgo8xgFVtcCsdtgojtctLfeWldnmpPq9ku-htkOaycRBUNA4aA7ULYDpVe_d3g3cYRpj3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1755815305</pqid></control><display><type>article</type><title>Sorption of Ni(II) by Fe(II) and EDTA-modified activated carbon derived from pyrophosphoric acid activation</title><source>Alma/SFX Local Collection</source><creator>Wang, Jing ; Wang, Yan ; Liu, Hai ; Zhang, Jian ; Zhang, Chenglu ; Wang, Jinhe</creator><creatorcontrib>Wang, Jing ; Wang, Yan ; Liu, Hai ; Zhang, Jian ; Zhang, Chenglu ; Wang, Jinhe</creatorcontrib><description>Activated carbon (LSAC) was obtained from lotus stalk by pyrophosphoric acid activation. The LSAC was modified by FeCl2 and Na2EDTA (Fe–EDTA/LSAC) to enhance its ability for Ni(II) sorption from aqueous solutions. The activated carbons were characterized by N2 adsorption and desorption isotherms, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction. The sorption of Ni(II) from aqueous solution onto the LSAC and Fe-EDTA/LSAC under various conditions of dosage, contact time, initial solution pH, initial Ni(II) concentration, and ionic strength was investigated to illustrate the mechanism and to quantify the sorption parameters. LSAC and Fe-EDTA/LSAC were mainly microporous with pores almost less than 4 nm. Although the surface area of LSAC (824 m2 g−1) was much higher than that of Fe–EDTA/LSAC (445 m2/g), the Ni(II) sorption capacity of Fe–EDTA/LSAC was larger than that of LSAC. The pH and ionic strength studies indicated that the main Ni(II) sorption mechanisms by the carbons were electrostatic attraction and cation exchange. The kinetics and equilibrium data agreed well with the pseudo-second-order kinetics model and Langmuir isotherm model.</description><identifier>ISSN: 1944-3986</identifier><identifier>ISSN: 1944-3994</identifier><identifier>EISSN: 1944-3986</identifier><identifier>DOI: 10.1080/19443994.2014.989917</identifier><language>eng</language><publisher>Abingdon: Elsevier Inc</publisher><subject>Activated carbon ; Activation ; Cation exchange ; Fourier transforms ; Infrared spectroscopy ; Isotherms ; Kinetics ; Mathematical models ; Modification ; Ni(II) ; Nickel ; Sorption ; X-ray diffraction</subject><ispartof>Desalination and water treatment, 2016-02, Vol.57 (8), p.3700-3707</ispartof><rights>2014 Elsevier Inc.</rights><rights>2014 Balaban Desalination Publications. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-5115c89a38d9115ee68744b3b7e8ce8f3f4e63dc42c90902f3a3451831fe7f373</citedby><cites>FETCH-LOGICAL-c470t-5115c89a38d9115ee68744b3b7e8ce8f3f4e63dc42c90902f3a3451831fe7f373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Liu, Hai</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Zhang, Chenglu</creatorcontrib><creatorcontrib>Wang, Jinhe</creatorcontrib><title>Sorption of Ni(II) by Fe(II) and EDTA-modified activated carbon derived from pyrophosphoric acid activation</title><title>Desalination and water treatment</title><description>Activated carbon (LSAC) was obtained from lotus stalk by pyrophosphoric acid activation. The LSAC was modified by FeCl2 and Na2EDTA (Fe–EDTA/LSAC) to enhance its ability for Ni(II) sorption from aqueous solutions. The activated carbons were characterized by N2 adsorption and desorption isotherms, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction. The sorption of Ni(II) from aqueous solution onto the LSAC and Fe-EDTA/LSAC under various conditions of dosage, contact time, initial solution pH, initial Ni(II) concentration, and ionic strength was investigated to illustrate the mechanism and to quantify the sorption parameters. LSAC and Fe-EDTA/LSAC were mainly microporous with pores almost less than 4 nm. Although the surface area of LSAC (824 m2 g−1) was much higher than that of Fe–EDTA/LSAC (445 m2/g), the Ni(II) sorption capacity of Fe–EDTA/LSAC was larger than that of LSAC. The pH and ionic strength studies indicated that the main Ni(II) sorption mechanisms by the carbons were electrostatic attraction and cation exchange. The kinetics and equilibrium data agreed well with the pseudo-second-order kinetics model and Langmuir isotherm model.</description><subject>Activated carbon</subject><subject>Activation</subject><subject>Cation exchange</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>Isotherms</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Modification</subject><subject>Ni(II)</subject><subject>Nickel</subject><subject>Sorption</subject><subject>X-ray diffraction</subject><issn>1944-3986</issn><issn>1944-3994</issn><issn>1944-3986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkc1KAzEUhQdRsGjfwMWAm7qYmkySSbIRxN9C0YV1HdLMDaa2kzGZFvr2po6KuBADISeX79yQe7LsBKMxRgKdY0kpkZKOS4TpWAopMd_LBrtyQaSo9n_ow2wY4wKlxShntBxkr08-tJ3zTe5t_uBGk8lZPt_mt_ChdFPnN9ezy2Lla2cd1Lk2ndvoLimjwzzZaghuk642-FXeboNvX3xMOziTYPftSE8cZwdWLyMMP8-j7Pn2ZnZ1X0wf7yZXl9PCUI66gmHMjJCaiFomCVAJTumczDkIA8ISS6EitaGlkUii0hJNKMOCYAvcEk6OslHftw3-bQ2xUysXDSyXugG_jgpzUeGKSE7-gVYl4RVDOKGnv9CFX4cmfSRRjAnMCGKJoj1lgo8xgFVtcCsdtgojtctLfeWldnmpPq9ku-htkOaycRBUNA4aA7ULYDpVe_d3g3cYRpj3</recordid><startdate>20160213</startdate><enddate>20160213</enddate><creator>Wang, Jing</creator><creator>Wang, Yan</creator><creator>Liu, Hai</creator><creator>Zhang, Jian</creator><creator>Zhang, Chenglu</creator><creator>Wang, Jinhe</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>H97</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20160213</creationdate><title>Sorption of Ni(II) by Fe(II) and EDTA-modified activated carbon derived from pyrophosphoric acid activation</title><author>Wang, Jing ; Wang, Yan ; Liu, Hai ; Zhang, Jian ; Zhang, Chenglu ; Wang, Jinhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-5115c89a38d9115ee68744b3b7e8ce8f3f4e63dc42c90902f3a3451831fe7f373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Activated carbon</topic><topic>Activation</topic><topic>Cation exchange</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>Isotherms</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Modification</topic><topic>Ni(II)</topic><topic>Nickel</topic><topic>Sorption</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Liu, Hai</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Zhang, Chenglu</creatorcontrib><creatorcontrib>Wang, Jinhe</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Desalination and water treatment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jing</au><au>Wang, Yan</au><au>Liu, Hai</au><au>Zhang, Jian</au><au>Zhang, Chenglu</au><au>Wang, Jinhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sorption of Ni(II) by Fe(II) and EDTA-modified activated carbon derived from pyrophosphoric acid activation</atitle><jtitle>Desalination and water treatment</jtitle><date>2016-02-13</date><risdate>2016</risdate><volume>57</volume><issue>8</issue><spage>3700</spage><epage>3707</epage><pages>3700-3707</pages><issn>1944-3986</issn><issn>1944-3994</issn><eissn>1944-3986</eissn><abstract>Activated carbon (LSAC) was obtained from lotus stalk by pyrophosphoric acid activation. The LSAC was modified by FeCl2 and Na2EDTA (Fe–EDTA/LSAC) to enhance its ability for Ni(II) sorption from aqueous solutions. The activated carbons were characterized by N2 adsorption and desorption isotherms, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction. The sorption of Ni(II) from aqueous solution onto the LSAC and Fe-EDTA/LSAC under various conditions of dosage, contact time, initial solution pH, initial Ni(II) concentration, and ionic strength was investigated to illustrate the mechanism and to quantify the sorption parameters. LSAC and Fe-EDTA/LSAC were mainly microporous with pores almost less than 4 nm. Although the surface area of LSAC (824 m2 g−1) was much higher than that of Fe–EDTA/LSAC (445 m2/g), the Ni(II) sorption capacity of Fe–EDTA/LSAC was larger than that of LSAC. The pH and ionic strength studies indicated that the main Ni(II) sorption mechanisms by the carbons were electrostatic attraction and cation exchange. The kinetics and equilibrium data agreed well with the pseudo-second-order kinetics model and Langmuir isotherm model.</abstract><cop>Abingdon</cop><pub>Elsevier Inc</pub><doi>10.1080/19443994.2014.989917</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-3986
ispartof Desalination and water treatment, 2016-02, Vol.57 (8), p.3700-3707
issn 1944-3986
1944-3994
1944-3986
language eng
recordid cdi_proquest_miscellaneous_1786163973
source Alma/SFX Local Collection
subjects Activated carbon
Activation
Cation exchange
Fourier transforms
Infrared spectroscopy
Isotherms
Kinetics
Mathematical models
Modification
Ni(II)
Nickel
Sorption
X-ray diffraction
title Sorption of Ni(II) by Fe(II) and EDTA-modified activated carbon derived from pyrophosphoric acid activation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A52%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sorption%20of%20Ni(II)%20by%20Fe(II)%20and%20EDTA-modified%20activated%20carbon%20derived%20from%20pyrophosphoric%20acid%20activation&rft.jtitle=Desalination%20and%20water%20treatment&rft.au=Wang,%20Jing&rft.date=2016-02-13&rft.volume=57&rft.issue=8&rft.spage=3700&rft.epage=3707&rft.pages=3700-3707&rft.issn=1944-3986&rft.eissn=1944-3986&rft_id=info:doi/10.1080/19443994.2014.989917&rft_dat=%3Cproquest_cross%3E1762376501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1755815305&rft_id=info:pmid/&rft_els_id=S1944398624040359&rfr_iscdi=true