Stability of a delayed predator-prey model in a random environment
The stability of the first-order and second-order solution moments for a Harrison-type predator-prey model with parametric Gaussian white noise is analyzed in this paper. The moment equations of the system solution are obtained under Ito interpretations. The delay-independent stable condition of the...
Gespeichert in:
Veröffentlicht in: | Chinese physics B 2015-11, Vol.24 (11), p.140-145 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 145 |
---|---|
container_issue | 11 |
container_start_page | 140 |
container_title | Chinese physics B |
container_volume | 24 |
creator | 靳艳飞 谢文贤 |
description | The stability of the first-order and second-order solution moments for a Harrison-type predator-prey model with parametric Gaussian white noise is analyzed in this paper. The moment equations of the system solution are obtained under Ito interpretations. The delay-independent stable condition of the first-order moment is identical to that of the deterministic delayed system, and the delay-independent stable condition of the second-order moment depends on the noise intensities. The corresponding critical time delays are determined once the stabilities of moments lose. Further, when the time delays are greater than the critical time delays, the system solution becomes unstable with the increase of noise intensities. Finally, some numerical simulations are given to verify the theoretical results. |
doi_str_mv | 10.1088/1674-1056/24/11/110501 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786163725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>666471617</cqvip_id><sourcerecordid>1786163725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-2df656d2326852bc521b96602a88ce43184f5d159991c415072df6edfd3b566f3</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK7-BSmevNRmkmaaHnXxCxY8qOeQNulaaZPdpCv039uyy8LAOwzPO4eHkFugD0ClzACLPAUqMGN5BjANFRTOyIJRIVMueX5OFifoklzF-EspAmV8QZ4-B121XTuMiW8SnRjb6dGaZBus0YMP6bSMSe-ne9K6CQjaGd8n1v21wbveuuGaXDS6i_bmmEvy_fL8tXpL1x-v76vHdVpzEEPKTIMCDeMMpWBVLRhUJSJlWsra5hxk3ggDoixLqHMQtJgb1jSGVwKx4Utyf_i7DX63t3FQfRtr23XaWb-PCgqJgLxgYkLxgNbBxxhso7ah7XUYFVA1S1OzDzX7UGxKUAdpU_HuWPzxbrNr3ebURMS8AISC_wOzj2mf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786163725</pqid></control><display><type>article</type><title>Stability of a delayed predator-prey model in a random environment</title><source>IOP Publishing Journals</source><creator>靳艳飞 谢文贤</creator><creatorcontrib>靳艳飞 谢文贤</creatorcontrib><description>The stability of the first-order and second-order solution moments for a Harrison-type predator-prey model with parametric Gaussian white noise is analyzed in this paper. The moment equations of the system solution are obtained under Ito interpretations. The delay-independent stable condition of the first-order moment is identical to that of the deterministic delayed system, and the delay-independent stable condition of the second-order moment depends on the noise intensities. The corresponding critical time delays are determined once the stabilities of moments lose. Further, when the time delays are greater than the critical time delays, the system solution becomes unstable with the increase of noise intensities. Finally, some numerical simulations are given to verify the theoretical results.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><identifier>EISSN: 1741-4199</identifier><identifier>DOI: 10.1088/1674-1056/24/11/110501</identifier><language>eng</language><subject>Computer simulation ; Gaussian ; Mathematical analysis ; Mathematical models ; Noise intensity ; Stability ; Time delay ; White noise ; 捕食模型 ; 捕食者-食饵 ; 时滞无关 ; 时滞系统 ; 时间延迟 ; 矩稳定性 ; 稳定条件 ; 随机环境</subject><ispartof>Chinese physics B, 2015-11, Vol.24 (11), p.140-145</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-2df656d2326852bc521b96602a88ce43184f5d159991c415072df6edfd3b566f3</citedby><cites>FETCH-LOGICAL-c315t-2df656d2326852bc521b96602a88ce43184f5d159991c415072df6edfd3b566f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>靳艳飞 谢文贤</creatorcontrib><title>Stability of a delayed predator-prey model in a random environment</title><title>Chinese physics B</title><addtitle>Chinese Physics</addtitle><description>The stability of the first-order and second-order solution moments for a Harrison-type predator-prey model with parametric Gaussian white noise is analyzed in this paper. The moment equations of the system solution are obtained under Ito interpretations. The delay-independent stable condition of the first-order moment is identical to that of the deterministic delayed system, and the delay-independent stable condition of the second-order moment depends on the noise intensities. The corresponding critical time delays are determined once the stabilities of moments lose. Further, when the time delays are greater than the critical time delays, the system solution becomes unstable with the increase of noise intensities. Finally, some numerical simulations are given to verify the theoretical results.</description><subject>Computer simulation</subject><subject>Gaussian</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Noise intensity</subject><subject>Stability</subject><subject>Time delay</subject><subject>White noise</subject><subject>捕食模型</subject><subject>捕食者-食饵</subject><subject>时滞无关</subject><subject>时滞系统</subject><subject>时间延迟</subject><subject>矩稳定性</subject><subject>稳定条件</subject><subject>随机环境</subject><issn>1674-1056</issn><issn>2058-3834</issn><issn>1741-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMouK7-BSmevNRmkmaaHnXxCxY8qOeQNulaaZPdpCv039uyy8LAOwzPO4eHkFugD0ClzACLPAUqMGN5BjANFRTOyIJRIVMueX5OFifoklzF-EspAmV8QZ4-B121XTuMiW8SnRjb6dGaZBus0YMP6bSMSe-ne9K6CQjaGd8n1v21wbveuuGaXDS6i_bmmEvy_fL8tXpL1x-v76vHdVpzEEPKTIMCDeMMpWBVLRhUJSJlWsra5hxk3ggDoixLqHMQtJgb1jSGVwKx4Utyf_i7DX63t3FQfRtr23XaWb-PCgqJgLxgYkLxgNbBxxhso7ah7XUYFVA1S1OzDzX7UGxKUAdpU_HuWPzxbrNr3ebURMS8AISC_wOzj2mf</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>靳艳飞 谢文贤</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20151101</creationdate><title>Stability of a delayed predator-prey model in a random environment</title><author>靳艳飞 谢文贤</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-2df656d2326852bc521b96602a88ce43184f5d159991c415072df6edfd3b566f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computer simulation</topic><topic>Gaussian</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Noise intensity</topic><topic>Stability</topic><topic>Time delay</topic><topic>White noise</topic><topic>捕食模型</topic><topic>捕食者-食饵</topic><topic>时滞无关</topic><topic>时滞系统</topic><topic>时间延迟</topic><topic>矩稳定性</topic><topic>稳定条件</topic><topic>随机环境</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>靳艳飞 谢文贤</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>靳艳飞 谢文贤</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of a delayed predator-prey model in a random environment</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chinese Physics</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>24</volume><issue>11</issue><spage>140</spage><epage>145</epage><pages>140-145</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><eissn>1741-4199</eissn><abstract>The stability of the first-order and second-order solution moments for a Harrison-type predator-prey model with parametric Gaussian white noise is analyzed in this paper. The moment equations of the system solution are obtained under Ito interpretations. The delay-independent stable condition of the first-order moment is identical to that of the deterministic delayed system, and the delay-independent stable condition of the second-order moment depends on the noise intensities. The corresponding critical time delays are determined once the stabilities of moments lose. Further, when the time delays are greater than the critical time delays, the system solution becomes unstable with the increase of noise intensities. Finally, some numerical simulations are given to verify the theoretical results.</abstract><doi>10.1088/1674-1056/24/11/110501</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-1056 |
ispartof | Chinese physics B, 2015-11, Vol.24 (11), p.140-145 |
issn | 1674-1056 2058-3834 1741-4199 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786163725 |
source | IOP Publishing Journals |
subjects | Computer simulation Gaussian Mathematical analysis Mathematical models Noise intensity Stability Time delay White noise 捕食模型 捕食者-食饵 时滞无关 时滞系统 时间延迟 矩稳定性 稳定条件 随机环境 |
title | Stability of a delayed predator-prey model in a random environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A32%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20a%20delayed%20predator-prey%20model%20in%20a%20random%20environment&rft.jtitle=Chinese%20physics%20B&rft.au=%E9%9D%B3%E8%89%B3%E9%A3%9E%20%E8%B0%A2%E6%96%87%E8%B4%A4&rft.date=2015-11-01&rft.volume=24&rft.issue=11&rft.spage=140&rft.epage=145&rft.pages=140-145&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/10.1088/1674-1056/24/11/110501&rft_dat=%3Cproquest_cross%3E1786163725%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786163725&rft_id=info:pmid/&rft_cqvip_id=666471617&rfr_iscdi=true |