Stability of a delayed predator-prey model in a random environment

The stability of the first-order and second-order solution moments for a Harrison-type predator-prey model with parametric Gaussian white noise is analyzed in this paper. The moment equations of the system solution are obtained under Ito interpretations. The delay-independent stable condition of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2015-11, Vol.24 (11), p.140-145
1. Verfasser: 靳艳飞 谢文贤
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 145
container_issue 11
container_start_page 140
container_title Chinese physics B
container_volume 24
creator 靳艳飞 谢文贤
description The stability of the first-order and second-order solution moments for a Harrison-type predator-prey model with parametric Gaussian white noise is analyzed in this paper. The moment equations of the system solution are obtained under Ito interpretations. The delay-independent stable condition of the first-order moment is identical to that of the deterministic delayed system, and the delay-independent stable condition of the second-order moment depends on the noise intensities. The corresponding critical time delays are determined once the stabilities of moments lose. Further, when the time delays are greater than the critical time delays, the system solution becomes unstable with the increase of noise intensities. Finally, some numerical simulations are given to verify the theoretical results.
doi_str_mv 10.1088/1674-1056/24/11/110501
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786163725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>666471617</cqvip_id><sourcerecordid>1786163725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-2df656d2326852bc521b96602a88ce43184f5d159991c415072df6edfd3b566f3</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK7-BSmevNRmkmaaHnXxCxY8qOeQNulaaZPdpCv039uyy8LAOwzPO4eHkFugD0ClzACLPAUqMGN5BjANFRTOyIJRIVMueX5OFifoklzF-EspAmV8QZ4-B121XTuMiW8SnRjb6dGaZBus0YMP6bSMSe-ne9K6CQjaGd8n1v21wbveuuGaXDS6i_bmmEvy_fL8tXpL1x-v76vHdVpzEEPKTIMCDeMMpWBVLRhUJSJlWsra5hxk3ggDoixLqHMQtJgb1jSGVwKx4Utyf_i7DX63t3FQfRtr23XaWb-PCgqJgLxgYkLxgNbBxxhso7ah7XUYFVA1S1OzDzX7UGxKUAdpU_HuWPzxbrNr3ebURMS8AISC_wOzj2mf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786163725</pqid></control><display><type>article</type><title>Stability of a delayed predator-prey model in a random environment</title><source>IOP Publishing Journals</source><creator>靳艳飞 谢文贤</creator><creatorcontrib>靳艳飞 谢文贤</creatorcontrib><description>The stability of the first-order and second-order solution moments for a Harrison-type predator-prey model with parametric Gaussian white noise is analyzed in this paper. The moment equations of the system solution are obtained under Ito interpretations. The delay-independent stable condition of the first-order moment is identical to that of the deterministic delayed system, and the delay-independent stable condition of the second-order moment depends on the noise intensities. The corresponding critical time delays are determined once the stabilities of moments lose. Further, when the time delays are greater than the critical time delays, the system solution becomes unstable with the increase of noise intensities. Finally, some numerical simulations are given to verify the theoretical results.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><identifier>EISSN: 1741-4199</identifier><identifier>DOI: 10.1088/1674-1056/24/11/110501</identifier><language>eng</language><subject>Computer simulation ; Gaussian ; Mathematical analysis ; Mathematical models ; Noise intensity ; Stability ; Time delay ; White noise ; 捕食模型 ; 捕食者-食饵 ; 时滞无关 ; 时滞系统 ; 时间延迟 ; 矩稳定性 ; 稳定条件 ; 随机环境</subject><ispartof>Chinese physics B, 2015-11, Vol.24 (11), p.140-145</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-2df656d2326852bc521b96602a88ce43184f5d159991c415072df6edfd3b566f3</citedby><cites>FETCH-LOGICAL-c315t-2df656d2326852bc521b96602a88ce43184f5d159991c415072df6edfd3b566f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>靳艳飞 谢文贤</creatorcontrib><title>Stability of a delayed predator-prey model in a random environment</title><title>Chinese physics B</title><addtitle>Chinese Physics</addtitle><description>The stability of the first-order and second-order solution moments for a Harrison-type predator-prey model with parametric Gaussian white noise is analyzed in this paper. The moment equations of the system solution are obtained under Ito interpretations. The delay-independent stable condition of the first-order moment is identical to that of the deterministic delayed system, and the delay-independent stable condition of the second-order moment depends on the noise intensities. The corresponding critical time delays are determined once the stabilities of moments lose. Further, when the time delays are greater than the critical time delays, the system solution becomes unstable with the increase of noise intensities. Finally, some numerical simulations are given to verify the theoretical results.</description><subject>Computer simulation</subject><subject>Gaussian</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Noise intensity</subject><subject>Stability</subject><subject>Time delay</subject><subject>White noise</subject><subject>捕食模型</subject><subject>捕食者-食饵</subject><subject>时滞无关</subject><subject>时滞系统</subject><subject>时间延迟</subject><subject>矩稳定性</subject><subject>稳定条件</subject><subject>随机环境</subject><issn>1674-1056</issn><issn>2058-3834</issn><issn>1741-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMouK7-BSmevNRmkmaaHnXxCxY8qOeQNulaaZPdpCv039uyy8LAOwzPO4eHkFugD0ClzACLPAUqMGN5BjANFRTOyIJRIVMueX5OFifoklzF-EspAmV8QZ4-B121XTuMiW8SnRjb6dGaZBus0YMP6bSMSe-ne9K6CQjaGd8n1v21wbveuuGaXDS6i_bmmEvy_fL8tXpL1x-v76vHdVpzEEPKTIMCDeMMpWBVLRhUJSJlWsra5hxk3ggDoixLqHMQtJgb1jSGVwKx4Utyf_i7DX63t3FQfRtr23XaWb-PCgqJgLxgYkLxgNbBxxhso7ah7XUYFVA1S1OzDzX7UGxKUAdpU_HuWPzxbrNr3ebURMS8AISC_wOzj2mf</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>靳艳飞 谢文贤</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20151101</creationdate><title>Stability of a delayed predator-prey model in a random environment</title><author>靳艳飞 谢文贤</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-2df656d2326852bc521b96602a88ce43184f5d159991c415072df6edfd3b566f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computer simulation</topic><topic>Gaussian</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Noise intensity</topic><topic>Stability</topic><topic>Time delay</topic><topic>White noise</topic><topic>捕食模型</topic><topic>捕食者-食饵</topic><topic>时滞无关</topic><topic>时滞系统</topic><topic>时间延迟</topic><topic>矩稳定性</topic><topic>稳定条件</topic><topic>随机环境</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>靳艳飞 谢文贤</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>靳艳飞 谢文贤</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of a delayed predator-prey model in a random environment</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chinese Physics</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>24</volume><issue>11</issue><spage>140</spage><epage>145</epage><pages>140-145</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><eissn>1741-4199</eissn><abstract>The stability of the first-order and second-order solution moments for a Harrison-type predator-prey model with parametric Gaussian white noise is analyzed in this paper. The moment equations of the system solution are obtained under Ito interpretations. The delay-independent stable condition of the first-order moment is identical to that of the deterministic delayed system, and the delay-independent stable condition of the second-order moment depends on the noise intensities. The corresponding critical time delays are determined once the stabilities of moments lose. Further, when the time delays are greater than the critical time delays, the system solution becomes unstable with the increase of noise intensities. Finally, some numerical simulations are given to verify the theoretical results.</abstract><doi>10.1088/1674-1056/24/11/110501</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-1056
ispartof Chinese physics B, 2015-11, Vol.24 (11), p.140-145
issn 1674-1056
2058-3834
1741-4199
language eng
recordid cdi_proquest_miscellaneous_1786163725
source IOP Publishing Journals
subjects Computer simulation
Gaussian
Mathematical analysis
Mathematical models
Noise intensity
Stability
Time delay
White noise
捕食模型
捕食者-食饵
时滞无关
时滞系统
时间延迟
矩稳定性
稳定条件
随机环境
title Stability of a delayed predator-prey model in a random environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A32%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20a%20delayed%20predator-prey%20model%20in%20a%20random%20environment&rft.jtitle=Chinese%20physics%20B&rft.au=%E9%9D%B3%E8%89%B3%E9%A3%9E%20%E8%B0%A2%E6%96%87%E8%B4%A4&rft.date=2015-11-01&rft.volume=24&rft.issue=11&rft.spage=140&rft.epage=145&rft.pages=140-145&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/10.1088/1674-1056/24/11/110501&rft_dat=%3Cproquest_cross%3E1786163725%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786163725&rft_id=info:pmid/&rft_cqvip_id=666471617&rfr_iscdi=true