Bounding the Set of Finite Dimensional Quantum Correlations
We describe a simple method to derive high performance semidefinite programing relaxations for optimizations over complex and real operator algebras in finite dimensional Hilbert spaces. The method is very flexible, easy to program, and allows the user to assess the behavior of finite dimensional qu...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2015-07, Vol.115 (2), p.020501-020501, Article 020501 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 020501 |
---|---|
container_issue | 2 |
container_start_page | 020501 |
container_title | Physical review letters |
container_volume | 115 |
creator | Navascues, Miguel Vertesi, Tamas |
description | We describe a simple method to derive high performance semidefinite programing relaxations for optimizations over complex and real operator algebras in finite dimensional Hilbert spaces. The method is very flexible, easy to program, and allows the user to assess the behavior of finite dimensional quantum systems in a number of interesting setups. We use this method to bound the strength of quantum nonlocality in Bell scenarios where the dimension of the parties is bounded from above. We derive new results in quantum communication complexity and prove the soundness of the prepare-and-measure dimension witnesses introduced in Gallego et al., Phys. Rev. Lett. 105, 230501 (2010). Finally, we propose a new dimension witness that can distinguish between classical, real, and complex two-level systems. |
doi_str_mv | 10.1103/PhysRevLett.115.020501 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786159712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1698963191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-f8dd114c7d1cf9029c8e165a4f6654879a3f9afe89558a908935855b10f6b3903</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRtFb_QsnRS-pMNvsxeNJqVSj4fQ7bZFcj-ajZjdB_b6RVvHkaeHnemeFhbIIwRQR-ev-29o_2c2FDGAIxhQQE4A4bISiKFWK6y0YAHGMCUAfs0Pt3AMBE6n12kMgEVCrSETu7aPumKJvXKLzZ6MmGqHXRvGzKYKPLsraNL9vGVNFDb5rQ19Gs7TpbmTCk_ojtOVN5e7ydY_Yyv3qe3cSLu-vb2fkizjmpEDtdFMM_uSowdwQJ5dqiFCZ1UopUKzLckXFWkxDaEGjiQguxRHByyQn4mJ1s9q669qO3PmR16XNbVaaxbe8zVFqiIIXJ_6gkTZIj4YDKDZp3rfedddmqK2vTrTOE7Ntx9sfxEIhs43goTrY3-mVti9_aj1T-BReMeQI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1698963191</pqid></control><display><type>article</type><title>Bounding the Set of Finite Dimensional Quantum Correlations</title><source>American Physical Society Journals</source><creator>Navascues, Miguel ; Vertesi, Tamas</creator><creatorcontrib>Navascues, Miguel ; Vertesi, Tamas</creatorcontrib><description>We describe a simple method to derive high performance semidefinite programing relaxations for optimizations over complex and real operator algebras in finite dimensional Hilbert spaces. The method is very flexible, easy to program, and allows the user to assess the behavior of finite dimensional quantum systems in a number of interesting setups. We use this method to bound the strength of quantum nonlocality in Bell scenarios where the dimension of the parties is bounded from above. We derive new results in quantum communication complexity and prove the soundness of the prepare-and-measure dimension witnesses introduced in Gallego et al., Phys. Rev. Lett. 105, 230501 (2010). Finally, we propose a new dimension witness that can distinguish between classical, real, and complex two-level systems.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.115.020501</identifier><identifier>PMID: 26207454</identifier><language>eng</language><publisher>United States</publisher><subject>Algebra ; Bells ; Correlation ; Hilbert space ; Mathematical analysis ; Operators ; Optimization ; Quantum theory</subject><ispartof>Physical review letters, 2015-07, Vol.115 (2), p.020501-020501, Article 020501</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-f8dd114c7d1cf9029c8e165a4f6654879a3f9afe89558a908935855b10f6b3903</citedby><cites>FETCH-LOGICAL-c397t-f8dd114c7d1cf9029c8e165a4f6654879a3f9afe89558a908935855b10f6b3903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26207454$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Navascues, Miguel</creatorcontrib><creatorcontrib>Vertesi, Tamas</creatorcontrib><title>Bounding the Set of Finite Dimensional Quantum Correlations</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We describe a simple method to derive high performance semidefinite programing relaxations for optimizations over complex and real operator algebras in finite dimensional Hilbert spaces. The method is very flexible, easy to program, and allows the user to assess the behavior of finite dimensional quantum systems in a number of interesting setups. We use this method to bound the strength of quantum nonlocality in Bell scenarios where the dimension of the parties is bounded from above. We derive new results in quantum communication complexity and prove the soundness of the prepare-and-measure dimension witnesses introduced in Gallego et al., Phys. Rev. Lett. 105, 230501 (2010). Finally, we propose a new dimension witness that can distinguish between classical, real, and complex two-level systems.</description><subject>Algebra</subject><subject>Bells</subject><subject>Correlation</subject><subject>Hilbert space</subject><subject>Mathematical analysis</subject><subject>Operators</subject><subject>Optimization</subject><subject>Quantum theory</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRtFb_QsnRS-pMNvsxeNJqVSj4fQ7bZFcj-ajZjdB_b6RVvHkaeHnemeFhbIIwRQR-ev-29o_2c2FDGAIxhQQE4A4bISiKFWK6y0YAHGMCUAfs0Pt3AMBE6n12kMgEVCrSETu7aPumKJvXKLzZ6MmGqHXRvGzKYKPLsraNL9vGVNFDb5rQ19Gs7TpbmTCk_ojtOVN5e7ydY_Yyv3qe3cSLu-vb2fkizjmpEDtdFMM_uSowdwQJ5dqiFCZ1UopUKzLckXFWkxDaEGjiQguxRHByyQn4mJ1s9q669qO3PmR16XNbVaaxbe8zVFqiIIXJ_6gkTZIj4YDKDZp3rfedddmqK2vTrTOE7Ntx9sfxEIhs43goTrY3-mVti9_aj1T-BReMeQI</recordid><startdate>20150710</startdate><enddate>20150710</enddate><creator>Navascues, Miguel</creator><creator>Vertesi, Tamas</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150710</creationdate><title>Bounding the Set of Finite Dimensional Quantum Correlations</title><author>Navascues, Miguel ; Vertesi, Tamas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-f8dd114c7d1cf9029c8e165a4f6654879a3f9afe89558a908935855b10f6b3903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algebra</topic><topic>Bells</topic><topic>Correlation</topic><topic>Hilbert space</topic><topic>Mathematical analysis</topic><topic>Operators</topic><topic>Optimization</topic><topic>Quantum theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Navascues, Miguel</creatorcontrib><creatorcontrib>Vertesi, Tamas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Navascues, Miguel</au><au>Vertesi, Tamas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bounding the Set of Finite Dimensional Quantum Correlations</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2015-07-10</date><risdate>2015</risdate><volume>115</volume><issue>2</issue><spage>020501</spage><epage>020501</epage><pages>020501-020501</pages><artnum>020501</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We describe a simple method to derive high performance semidefinite programing relaxations for optimizations over complex and real operator algebras in finite dimensional Hilbert spaces. The method is very flexible, easy to program, and allows the user to assess the behavior of finite dimensional quantum systems in a number of interesting setups. We use this method to bound the strength of quantum nonlocality in Bell scenarios where the dimension of the parties is bounded from above. We derive new results in quantum communication complexity and prove the soundness of the prepare-and-measure dimension witnesses introduced in Gallego et al., Phys. Rev. Lett. 105, 230501 (2010). Finally, we propose a new dimension witness that can distinguish between classical, real, and complex two-level systems.</abstract><cop>United States</cop><pmid>26207454</pmid><doi>10.1103/PhysRevLett.115.020501</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2015-07, Vol.115 (2), p.020501-020501, Article 020501 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786159712 |
source | American Physical Society Journals |
subjects | Algebra Bells Correlation Hilbert space Mathematical analysis Operators Optimization Quantum theory |
title | Bounding the Set of Finite Dimensional Quantum Correlations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T08%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bounding%20the%20Set%20of%20Finite%20Dimensional%20Quantum%20Correlations&rft.jtitle=Physical%20review%20letters&rft.au=Navascues,%20Miguel&rft.date=2015-07-10&rft.volume=115&rft.issue=2&rft.spage=020501&rft.epage=020501&rft.pages=020501-020501&rft.artnum=020501&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.115.020501&rft_dat=%3Cproquest_cross%3E1698963191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1698963191&rft_id=info:pmid/26207454&rfr_iscdi=true |