Generation, Transmission, and Detection of 4-D Set-Partitioning QAM Signals
Four-dimensional (4-D) set-partitioning quadrature amplitude modulation (4-D SP-QAM) has emerged as an interesting option for cost- and resource-efficient realization of bandwidth variable transceivers in elastic optical networks. In this invited paper, we review the principles for generation of 4-D...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2015-04, Vol.33 (7), p.1445-1451 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1451 |
---|---|
container_issue | 7 |
container_start_page | 1445 |
container_title | Journal of lightwave technology |
container_volume | 33 |
creator | Fischer, Johannes Karl Schmidt-Langhorst, Carsten Alreesh, Saleem Elschner, Robert Frey, Felix Berenguer, Pablo Wilke Molle, Lutz Nolle, Markus Schubert, Colja |
description | Four-dimensional (4-D) set-partitioning quadrature amplitude modulation (4-D SP-QAM) has emerged as an interesting option for cost- and resource-efficient realization of bandwidth variable transceivers in elastic optical networks. In this invited paper, we review the principles for generation of 4-D SP-QAM signals, and describe options for forward error correction coding of 4-D SP-QAM signals and for realization of the digital signal processing in the coherent receiver. Furthermore, we report on the experimental realization of 4-D 512-ary and 2048-ary SP-QAM signals at a symbol rate of 28 GBd and investigate their performance in a Nyquist-WDM scenario. In transmission experiments over standard single-mode fiber, we compare the reach and spectral efficiency of five-carrier Nyquist-WDM signals modulated by various 4-D SP-QAM formats and polarization-division multiplexed (PDM) QAM formats. Of these modulation formats, the one with the lowest spectral efficiency is 128-ary SP-QAM encoding 7 bits/4-D symbol and the one with the highest spectral efficiency is PDM-64QAM encoding 12 bits/4-D symbol. By switching the modulation format, the spectral efficiency can be optimized for a specific reach with a granularity of 0.56 bit/s/Hz. |
doi_str_mv | 10.1109/JLT.2014.2379926 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786158685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6983529</ieee_id><sourcerecordid>3704472011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-2e2b5579e5135628d7236a50d6206803b6e302de2233e2c4c22e99f945d617fa3</originalsourceid><addsrcrecordid>eNpdkL1PwzAQxS0EEqWwI7FEYmEgxT7HX2PVQvkoAtQyW25yqVK1SbHTgf8eh1YMTKe793unp0fIJaMDxqi5e57OB0BZNgCujAF5RHpMCJ0CMH5MelRxnmoF2Sk5C2FFI5lp1SMvE6zRu7Zq6ttk7l0dNlUIv5uri2SMLeadmDRlkqXjZIZt-u58W3XHql4mH8PXZFYta7cO5-SkjAMvDrNPPh_u56PHdPo2eRoNp2nOIWtTQFgIoQwKxoUEXSjg0glaSKBSU76QyCkUCMA5Qp7lAGhMaTJRSKZKx_vkZv9365uvHYbWxsw5rteuxmYXLFNaMqGlFhG9_oeump3vwloWdZUxwXWk6J7KfROCx9JufbVx_tsyart2bWzXdu3aQ7vRcrW3VIj4h0ujuQDDfwCD-nJ5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685741538</pqid></control><display><type>article</type><title>Generation, Transmission, and Detection of 4-D Set-Partitioning QAM Signals</title><source>IEEE Electronic Library (IEL)</source><creator>Fischer, Johannes Karl ; Schmidt-Langhorst, Carsten ; Alreesh, Saleem ; Elschner, Robert ; Frey, Felix ; Berenguer, Pablo Wilke ; Molle, Lutz ; Nolle, Markus ; Schubert, Colja</creator><creatorcontrib>Fischer, Johannes Karl ; Schmidt-Langhorst, Carsten ; Alreesh, Saleem ; Elschner, Robert ; Frey, Felix ; Berenguer, Pablo Wilke ; Molle, Lutz ; Nolle, Markus ; Schubert, Colja</creatorcontrib><description>Four-dimensional (4-D) set-partitioning quadrature amplitude modulation (4-D SP-QAM) has emerged as an interesting option for cost- and resource-efficient realization of bandwidth variable transceivers in elastic optical networks. In this invited paper, we review the principles for generation of 4-D SP-QAM signals, and describe options for forward error correction coding of 4-D SP-QAM signals and for realization of the digital signal processing in the coherent receiver. Furthermore, we report on the experimental realization of 4-D 512-ary and 2048-ary SP-QAM signals at a symbol rate of 28 GBd and investigate their performance in a Nyquist-WDM scenario. In transmission experiments over standard single-mode fiber, we compare the reach and spectral efficiency of five-carrier Nyquist-WDM signals modulated by various 4-D SP-QAM formats and polarization-division multiplexed (PDM) QAM formats. Of these modulation formats, the one with the lowest spectral efficiency is 128-ary SP-QAM encoding 7 bits/4-D symbol and the one with the highest spectral efficiency is PDM-64QAM encoding 12 bits/4-D symbol. By switching the modulation format, the spectral efficiency can be optimized for a specific reach with a granularity of 0.56 bit/s/Hz.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2014.2379926</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bit error rate ; Digital signal processing ; Efficiency ; Encoding ; Format ; Forward error correction ; Modulation ; Multiplexing ; optical fiber communication ; Optical transmitters ; partitioning algorithms ; Quadrature amplitude modulation ; Receivers ; Receivers & amplifiers ; Signal processing ; Spectra ; Symbols ; transceivers ; turbo codes ; wavelength division multiplexing ; Wideband communications</subject><ispartof>Journal of lightwave technology, 2015-04, Vol.33 (7), p.1445-1451</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 1, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-2e2b5579e5135628d7236a50d6206803b6e302de2233e2c4c22e99f945d617fa3</citedby><cites>FETCH-LOGICAL-c324t-2e2b5579e5135628d7236a50d6206803b6e302de2233e2c4c22e99f945d617fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6983529$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6983529$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fischer, Johannes Karl</creatorcontrib><creatorcontrib>Schmidt-Langhorst, Carsten</creatorcontrib><creatorcontrib>Alreesh, Saleem</creatorcontrib><creatorcontrib>Elschner, Robert</creatorcontrib><creatorcontrib>Frey, Felix</creatorcontrib><creatorcontrib>Berenguer, Pablo Wilke</creatorcontrib><creatorcontrib>Molle, Lutz</creatorcontrib><creatorcontrib>Nolle, Markus</creatorcontrib><creatorcontrib>Schubert, Colja</creatorcontrib><title>Generation, Transmission, and Detection of 4-D Set-Partitioning QAM Signals</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Four-dimensional (4-D) set-partitioning quadrature amplitude modulation (4-D SP-QAM) has emerged as an interesting option for cost- and resource-efficient realization of bandwidth variable transceivers in elastic optical networks. In this invited paper, we review the principles for generation of 4-D SP-QAM signals, and describe options for forward error correction coding of 4-D SP-QAM signals and for realization of the digital signal processing in the coherent receiver. Furthermore, we report on the experimental realization of 4-D 512-ary and 2048-ary SP-QAM signals at a symbol rate of 28 GBd and investigate their performance in a Nyquist-WDM scenario. In transmission experiments over standard single-mode fiber, we compare the reach and spectral efficiency of five-carrier Nyquist-WDM signals modulated by various 4-D SP-QAM formats and polarization-division multiplexed (PDM) QAM formats. Of these modulation formats, the one with the lowest spectral efficiency is 128-ary SP-QAM encoding 7 bits/4-D symbol and the one with the highest spectral efficiency is PDM-64QAM encoding 12 bits/4-D symbol. By switching the modulation format, the spectral efficiency can be optimized for a specific reach with a granularity of 0.56 bit/s/Hz.</description><subject>Bit error rate</subject><subject>Digital signal processing</subject><subject>Efficiency</subject><subject>Encoding</subject><subject>Format</subject><subject>Forward error correction</subject><subject>Modulation</subject><subject>Multiplexing</subject><subject>optical fiber communication</subject><subject>Optical transmitters</subject><subject>partitioning algorithms</subject><subject>Quadrature amplitude modulation</subject><subject>Receivers</subject><subject>Receivers & amplifiers</subject><subject>Signal processing</subject><subject>Spectra</subject><subject>Symbols</subject><subject>transceivers</subject><subject>turbo codes</subject><subject>wavelength division multiplexing</subject><subject>Wideband communications</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkL1PwzAQxS0EEqWwI7FEYmEgxT7HX2PVQvkoAtQyW25yqVK1SbHTgf8eh1YMTKe793unp0fIJaMDxqi5e57OB0BZNgCujAF5RHpMCJ0CMH5MelRxnmoF2Sk5C2FFI5lp1SMvE6zRu7Zq6ttk7l0dNlUIv5uri2SMLeadmDRlkqXjZIZt-u58W3XHql4mH8PXZFYta7cO5-SkjAMvDrNPPh_u56PHdPo2eRoNp2nOIWtTQFgIoQwKxoUEXSjg0glaSKBSU76QyCkUCMA5Qp7lAGhMaTJRSKZKx_vkZv9365uvHYbWxsw5rteuxmYXLFNaMqGlFhG9_oeump3vwloWdZUxwXWk6J7KfROCx9JufbVx_tsyart2bWzXdu3aQ7vRcrW3VIj4h0ujuQDDfwCD-nJ5</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Fischer, Johannes Karl</creator><creator>Schmidt-Langhorst, Carsten</creator><creator>Alreesh, Saleem</creator><creator>Elschner, Robert</creator><creator>Frey, Felix</creator><creator>Berenguer, Pablo Wilke</creator><creator>Molle, Lutz</creator><creator>Nolle, Markus</creator><creator>Schubert, Colja</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150401</creationdate><title>Generation, Transmission, and Detection of 4-D Set-Partitioning QAM Signals</title><author>Fischer, Johannes Karl ; Schmidt-Langhorst, Carsten ; Alreesh, Saleem ; Elschner, Robert ; Frey, Felix ; Berenguer, Pablo Wilke ; Molle, Lutz ; Nolle, Markus ; Schubert, Colja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-2e2b5579e5135628d7236a50d6206803b6e302de2233e2c4c22e99f945d617fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bit error rate</topic><topic>Digital signal processing</topic><topic>Efficiency</topic><topic>Encoding</topic><topic>Format</topic><topic>Forward error correction</topic><topic>Modulation</topic><topic>Multiplexing</topic><topic>optical fiber communication</topic><topic>Optical transmitters</topic><topic>partitioning algorithms</topic><topic>Quadrature amplitude modulation</topic><topic>Receivers</topic><topic>Receivers & amplifiers</topic><topic>Signal processing</topic><topic>Spectra</topic><topic>Symbols</topic><topic>transceivers</topic><topic>turbo codes</topic><topic>wavelength division multiplexing</topic><topic>Wideband communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fischer, Johannes Karl</creatorcontrib><creatorcontrib>Schmidt-Langhorst, Carsten</creatorcontrib><creatorcontrib>Alreesh, Saleem</creatorcontrib><creatorcontrib>Elschner, Robert</creatorcontrib><creatorcontrib>Frey, Felix</creatorcontrib><creatorcontrib>Berenguer, Pablo Wilke</creatorcontrib><creatorcontrib>Molle, Lutz</creatorcontrib><creatorcontrib>Nolle, Markus</creatorcontrib><creatorcontrib>Schubert, Colja</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fischer, Johannes Karl</au><au>Schmidt-Langhorst, Carsten</au><au>Alreesh, Saleem</au><au>Elschner, Robert</au><au>Frey, Felix</au><au>Berenguer, Pablo Wilke</au><au>Molle, Lutz</au><au>Nolle, Markus</au><au>Schubert, Colja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation, Transmission, and Detection of 4-D Set-Partitioning QAM Signals</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2015-04-01</date><risdate>2015</risdate><volume>33</volume><issue>7</issue><spage>1445</spage><epage>1451</epage><pages>1445-1451</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Four-dimensional (4-D) set-partitioning quadrature amplitude modulation (4-D SP-QAM) has emerged as an interesting option for cost- and resource-efficient realization of bandwidth variable transceivers in elastic optical networks. In this invited paper, we review the principles for generation of 4-D SP-QAM signals, and describe options for forward error correction coding of 4-D SP-QAM signals and for realization of the digital signal processing in the coherent receiver. Furthermore, we report on the experimental realization of 4-D 512-ary and 2048-ary SP-QAM signals at a symbol rate of 28 GBd and investigate their performance in a Nyquist-WDM scenario. In transmission experiments over standard single-mode fiber, we compare the reach and spectral efficiency of five-carrier Nyquist-WDM signals modulated by various 4-D SP-QAM formats and polarization-division multiplexed (PDM) QAM formats. Of these modulation formats, the one with the lowest spectral efficiency is 128-ary SP-QAM encoding 7 bits/4-D symbol and the one with the highest spectral efficiency is PDM-64QAM encoding 12 bits/4-D symbol. By switching the modulation format, the spectral efficiency can be optimized for a specific reach with a granularity of 0.56 bit/s/Hz.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2014.2379926</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2015-04, Vol.33 (7), p.1445-1451 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786158685 |
source | IEEE Electronic Library (IEL) |
subjects | Bit error rate Digital signal processing Efficiency Encoding Format Forward error correction Modulation Multiplexing optical fiber communication Optical transmitters partitioning algorithms Quadrature amplitude modulation Receivers Receivers & amplifiers Signal processing Spectra Symbols transceivers turbo codes wavelength division multiplexing Wideband communications |
title | Generation, Transmission, and Detection of 4-D Set-Partitioning QAM Signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A04%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation,%20Transmission,%20and%20Detection%20of%204-D%20Set-Partitioning%20QAM%20Signals&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Fischer,%20Johannes%20Karl&rft.date=2015-04-01&rft.volume=33&rft.issue=7&rft.spage=1445&rft.epage=1451&rft.pages=1445-1451&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2014.2379926&rft_dat=%3Cproquest_RIE%3E3704472011%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685741538&rft_id=info:pmid/&rft_ieee_id=6983529&rfr_iscdi=true |