Lossy mode resonance optical fiber sensor to detect organic vapors

A transmission sensor able to detect Volatile Organic Compounds (VOCs) has been developed using optical fiber with Plastic Cladding (PCS). Specifically, 1.5cm of the cladding was removed in order to deposit an organometallic compound whose chemical structure is [Au2Ag2(C6F5)4(C6H5CCC6H5)2]n along th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2013-10, Vol.187, p.65-71
Hauptverfasser: Elosúa, C., Vidondo, I., Arregui, F.J., Bariain, C., Luquin, A., Laguna, Mariano, Matías, I.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 71
container_issue
container_start_page 65
container_title Sensors and actuators. B, Chemical
container_volume 187
creator Elosúa, C.
Vidondo, I.
Arregui, F.J.
Bariain, C.
Luquin, A.
Laguna, Mariano
Matías, I.R.
description A transmission sensor able to detect Volatile Organic Compounds (VOCs) has been developed using optical fiber with Plastic Cladding (PCS). Specifically, 1.5cm of the cladding was removed in order to deposit an organometallic compound whose chemical structure is [Au2Ag2(C6F5)4(C6H5CCC6H5)2]n along this section. This complex reacts reversely in presence of organic vapors such as alcohols, therefore, it is used as sensing material. The compound was altered to show a negative charge, so it can be deposited combined with a positive charged polymer by means of the Layer-by-Layer (LbL) method. In this manner, as the nanolayers were deposited, Lossy Mode Resonances (LMRs) were induced and shifted. The polymer nanolayers doped with the organometallic material accelerated the LMRs appearance with respect to the nanolayers without additive and so, it enhanced the spectral shift. Once the construction process was completed, two LMRs were observed, choosing the second one to study the sensor behavior when it was placed at 663.57nm. The sensor was exposed to different concentrations of ethanol, methanol and isopropanol vapors, showing sensitivities of 0.417, 0.520 and 263nmppm−1, respectively. In the case of methanol, the second LMR peak shows a remarkable blue shift of 100nm. The interference with water vapors is minor to 1nm below 60%, whereas the effect of temperature is insignificant between 20°C and 60°C.
doi_str_mv 10.1016/j.snb.2012.09.046
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786158224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400512009598</els_id><sourcerecordid>1786158224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-a6531cb8f576db4accd43b14bec1c65474410fe4db64796d6d41366a68b873</originalsourceid><addsrcrecordid>eNp9kMtOwzAURC0EEqXwAazwkk3CdeLYiVhBxUuqhMRjbTn2TeWqjYOdVurf4yqsWc3mzEhzCLlmkDNg4m6dx77NC2BFDk0OXJyQGatlmZUg5SmZQVNUGQeozslFjGsA4KWAGXlc-hgPdOst0oDR97o3SP0wOqM3tHMtBhqxjz7Q0VOLI5qR-rDSvTN0rwcf4iU56_Qm4tVfzsnH89PX4jVbvr-8LR6WmSkbOWZaVCUzbd1VUtiWa2MsL1vGWzTMiIpLzhl0yG0ruGyEFZazUggt6jb9mJPbaXQI_meHcVRbFw1uNrpHv4uKyVqwqi4KnlA2oSakbwE7NQS31eGgGKijLLVWSZY6ylLQqCQrdW6mTqe90qvgovr-TEAFwJgsoU7E_URgurh3GFQ0DpMs60Jyoqx3_-z_AqEiezI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786158224</pqid></control><display><type>article</type><title>Lossy mode resonance optical fiber sensor to detect organic vapors</title><source>Elsevier ScienceDirect Journals</source><creator>Elosúa, C. ; Vidondo, I. ; Arregui, F.J. ; Bariain, C. ; Luquin, A. ; Laguna, Mariano ; Matías, I.R.</creator><creatorcontrib>Elosúa, C. ; Vidondo, I. ; Arregui, F.J. ; Bariain, C. ; Luquin, A. ; Laguna, Mariano ; Matías, I.R.</creatorcontrib><description>A transmission sensor able to detect Volatile Organic Compounds (VOCs) has been developed using optical fiber with Plastic Cladding (PCS). Specifically, 1.5cm of the cladding was removed in order to deposit an organometallic compound whose chemical structure is [Au2Ag2(C6F5)4(C6H5CCC6H5)2]n along this section. This complex reacts reversely in presence of organic vapors such as alcohols, therefore, it is used as sensing material. The compound was altered to show a negative charge, so it can be deposited combined with a positive charged polymer by means of the Layer-by-Layer (LbL) method. In this manner, as the nanolayers were deposited, Lossy Mode Resonances (LMRs) were induced and shifted. The polymer nanolayers doped with the organometallic material accelerated the LMRs appearance with respect to the nanolayers without additive and so, it enhanced the spectral shift. Once the construction process was completed, two LMRs were observed, choosing the second one to study the sensor behavior when it was placed at 663.57nm. The sensor was exposed to different concentrations of ethanol, methanol and isopropanol vapors, showing sensitivities of 0.417, 0.520 and 263nmppm−1, respectively. In the case of methanol, the second LMR peak shows a remarkable blue shift of 100nm. The interference with water vapors is minor to 1nm below 60%, whereas the effect of temperature is insignificant between 20°C and 60°C.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2012.09.046</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>chemical structure ; Cladding ; Deposition ; ethanol ; Ethyl alcohol ; isopropyl alcohol ; Layer-by-Layer (LbL) method ; Lossy Mode Resonances (LMRs) ; methanol ; Methyl alcohol ; Nanostructure ; Optical fibers ; Organometallic material ; polymers ; Sensors ; Spectral shift ; temperature ; volatile organic compounds ; Volatile Organic Compounds (VOCs) ; Water vapor</subject><ispartof>Sensors and actuators. B, Chemical, 2013-10, Vol.187, p.65-71</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-a6531cb8f576db4accd43b14bec1c65474410fe4db64796d6d41366a68b873</citedby><cites>FETCH-LOGICAL-c397t-a6531cb8f576db4accd43b14bec1c65474410fe4db64796d6d41366a68b873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925400512009598$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Elosúa, C.</creatorcontrib><creatorcontrib>Vidondo, I.</creatorcontrib><creatorcontrib>Arregui, F.J.</creatorcontrib><creatorcontrib>Bariain, C.</creatorcontrib><creatorcontrib>Luquin, A.</creatorcontrib><creatorcontrib>Laguna, Mariano</creatorcontrib><creatorcontrib>Matías, I.R.</creatorcontrib><title>Lossy mode resonance optical fiber sensor to detect organic vapors</title><title>Sensors and actuators. B, Chemical</title><description>A transmission sensor able to detect Volatile Organic Compounds (VOCs) has been developed using optical fiber with Plastic Cladding (PCS). Specifically, 1.5cm of the cladding was removed in order to deposit an organometallic compound whose chemical structure is [Au2Ag2(C6F5)4(C6H5CCC6H5)2]n along this section. This complex reacts reversely in presence of organic vapors such as alcohols, therefore, it is used as sensing material. The compound was altered to show a negative charge, so it can be deposited combined with a positive charged polymer by means of the Layer-by-Layer (LbL) method. In this manner, as the nanolayers were deposited, Lossy Mode Resonances (LMRs) were induced and shifted. The polymer nanolayers doped with the organometallic material accelerated the LMRs appearance with respect to the nanolayers without additive and so, it enhanced the spectral shift. Once the construction process was completed, two LMRs were observed, choosing the second one to study the sensor behavior when it was placed at 663.57nm. The sensor was exposed to different concentrations of ethanol, methanol and isopropanol vapors, showing sensitivities of 0.417, 0.520 and 263nmppm−1, respectively. In the case of methanol, the second LMR peak shows a remarkable blue shift of 100nm. The interference with water vapors is minor to 1nm below 60%, whereas the effect of temperature is insignificant between 20°C and 60°C.</description><subject>chemical structure</subject><subject>Cladding</subject><subject>Deposition</subject><subject>ethanol</subject><subject>Ethyl alcohol</subject><subject>isopropyl alcohol</subject><subject>Layer-by-Layer (LbL) method</subject><subject>Lossy Mode Resonances (LMRs)</subject><subject>methanol</subject><subject>Methyl alcohol</subject><subject>Nanostructure</subject><subject>Optical fibers</subject><subject>Organometallic material</subject><subject>polymers</subject><subject>Sensors</subject><subject>Spectral shift</subject><subject>temperature</subject><subject>volatile organic compounds</subject><subject>Volatile Organic Compounds (VOCs)</subject><subject>Water vapor</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAURC0EEqXwAazwkk3CdeLYiVhBxUuqhMRjbTn2TeWqjYOdVurf4yqsWc3mzEhzCLlmkDNg4m6dx77NC2BFDk0OXJyQGatlmZUg5SmZQVNUGQeozslFjGsA4KWAGXlc-hgPdOst0oDR97o3SP0wOqM3tHMtBhqxjz7Q0VOLI5qR-rDSvTN0rwcf4iU56_Qm4tVfzsnH89PX4jVbvr-8LR6WmSkbOWZaVCUzbd1VUtiWa2MsL1vGWzTMiIpLzhl0yG0ruGyEFZazUggt6jb9mJPbaXQI_meHcVRbFw1uNrpHv4uKyVqwqi4KnlA2oSakbwE7NQS31eGgGKijLLVWSZY6ylLQqCQrdW6mTqe90qvgovr-TEAFwJgsoU7E_URgurh3GFQ0DpMs60Jyoqx3_-z_AqEiezI</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Elosúa, C.</creator><creator>Vidondo, I.</creator><creator>Arregui, F.J.</creator><creator>Bariain, C.</creator><creator>Luquin, A.</creator><creator>Laguna, Mariano</creator><creator>Matías, I.R.</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20131001</creationdate><title>Lossy mode resonance optical fiber sensor to detect organic vapors</title><author>Elosúa, C. ; Vidondo, I. ; Arregui, F.J. ; Bariain, C. ; Luquin, A. ; Laguna, Mariano ; Matías, I.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-a6531cb8f576db4accd43b14bec1c65474410fe4db64796d6d41366a68b873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>chemical structure</topic><topic>Cladding</topic><topic>Deposition</topic><topic>ethanol</topic><topic>Ethyl alcohol</topic><topic>isopropyl alcohol</topic><topic>Layer-by-Layer (LbL) method</topic><topic>Lossy Mode Resonances (LMRs)</topic><topic>methanol</topic><topic>Methyl alcohol</topic><topic>Nanostructure</topic><topic>Optical fibers</topic><topic>Organometallic material</topic><topic>polymers</topic><topic>Sensors</topic><topic>Spectral shift</topic><topic>temperature</topic><topic>volatile organic compounds</topic><topic>Volatile Organic Compounds (VOCs)</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elosúa, C.</creatorcontrib><creatorcontrib>Vidondo, I.</creatorcontrib><creatorcontrib>Arregui, F.J.</creatorcontrib><creatorcontrib>Bariain, C.</creatorcontrib><creatorcontrib>Luquin, A.</creatorcontrib><creatorcontrib>Laguna, Mariano</creatorcontrib><creatorcontrib>Matías, I.R.</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elosúa, C.</au><au>Vidondo, I.</au><au>Arregui, F.J.</au><au>Bariain, C.</au><au>Luquin, A.</au><au>Laguna, Mariano</au><au>Matías, I.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lossy mode resonance optical fiber sensor to detect organic vapors</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2013-10-01</date><risdate>2013</risdate><volume>187</volume><spage>65</spage><epage>71</epage><pages>65-71</pages><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>A transmission sensor able to detect Volatile Organic Compounds (VOCs) has been developed using optical fiber with Plastic Cladding (PCS). Specifically, 1.5cm of the cladding was removed in order to deposit an organometallic compound whose chemical structure is [Au2Ag2(C6F5)4(C6H5CCC6H5)2]n along this section. This complex reacts reversely in presence of organic vapors such as alcohols, therefore, it is used as sensing material. The compound was altered to show a negative charge, so it can be deposited combined with a positive charged polymer by means of the Layer-by-Layer (LbL) method. In this manner, as the nanolayers were deposited, Lossy Mode Resonances (LMRs) were induced and shifted. The polymer nanolayers doped with the organometallic material accelerated the LMRs appearance with respect to the nanolayers without additive and so, it enhanced the spectral shift. Once the construction process was completed, two LMRs were observed, choosing the second one to study the sensor behavior when it was placed at 663.57nm. The sensor was exposed to different concentrations of ethanol, methanol and isopropanol vapors, showing sensitivities of 0.417, 0.520 and 263nmppm−1, respectively. In the case of methanol, the second LMR peak shows a remarkable blue shift of 100nm. The interference with water vapors is minor to 1nm below 60%, whereas the effect of temperature is insignificant between 20°C and 60°C.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2012.09.046</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2013-10, Vol.187, p.65-71
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_miscellaneous_1786158224
source Elsevier ScienceDirect Journals
subjects chemical structure
Cladding
Deposition
ethanol
Ethyl alcohol
isopropyl alcohol
Layer-by-Layer (LbL) method
Lossy Mode Resonances (LMRs)
methanol
Methyl alcohol
Nanostructure
Optical fibers
Organometallic material
polymers
Sensors
Spectral shift
temperature
volatile organic compounds
Volatile Organic Compounds (VOCs)
Water vapor
title Lossy mode resonance optical fiber sensor to detect organic vapors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A27%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lossy%20mode%20resonance%20optical%20fiber%20sensor%20to%20detect%20organic%20vapors&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Elos%C3%BAa,%20C.&rft.date=2013-10-01&rft.volume=187&rft.spage=65&rft.epage=71&rft.pages=65-71&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2012.09.046&rft_dat=%3Cproquest_cross%3E1786158224%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786158224&rft_id=info:pmid/&rft_els_id=S0925400512009598&rfr_iscdi=true