Excimer laser doping using highly doped silicon nanoparticles

Laser doping of crystalline Si (c‐Si) using highly doped Si nanoparticles (NPs) as the dopant source is investigated. For this purpose Si NPs are deposited onto c‐Si substrates from dispersion using a spin coater and subsequently laser annealed by scanning over the sample with a 248 nm line profile...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2013-11, Vol.210 (11), p.2456-2462
Hauptverfasser: Meseth, Martin, Kunert, Bernd Christian, Bitzer, Lucas, Kunze, Frederik, Meyer, Sebastian, Kiefer, Fabian, Dehnen, Martin, Orthner, Hans, Petermann, Nils, Kummer, Malin, Wiggers, Hartmut, Harder, Nils-Peter, Benson, Niels, Schmechel, Roland
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2462
container_issue 11
container_start_page 2456
container_title Physica status solidi. A, Applications and materials science
container_volume 210
creator Meseth, Martin
Kunert, Bernd Christian
Bitzer, Lucas
Kunze, Frederik
Meyer, Sebastian
Kiefer, Fabian
Dehnen, Martin
Orthner, Hans
Petermann, Nils
Kummer, Malin
Wiggers, Hartmut
Harder, Nils-Peter
Benson, Niels
Schmechel, Roland
description Laser doping of crystalline Si (c‐Si) using highly doped Si nanoparticles (NPs) as the dopant source is investigated. For this purpose Si NPs are deposited onto c‐Si substrates from dispersion using a spin coater and subsequently laser annealed by scanning over the sample with a 248 nm line profile excimer laser. Scanning electron microscope (SEM) investigations demonstrate that the laser intensity as well as the oxide concentration in the NP thin film strongly influence the film forming properties of the annealed NPs. Substrate doping is substantiated using electrochemical capacitance voltage (ECV) measurements on realized pn‐junctions. In dependence of the laser fluencies ranging from 0.81 to 2.54 J cm−2, the effective doping depth is determined to be in the range of 50 to 250 nm. The rectifying behaviour of the pn‐ or np‐junctions is verified by current voltage measurements. A homogeneous in‐plane doping distribution realized by the laser doping process is demonstrated on the µm scale by light beam induced current measurements.
doi_str_mv 10.1002/pssa.201329012
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786156908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786156908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3492-afdd05c95b35062616c3fa02f8b83141786021bb14bf79cad252bc5f2f74257a3</originalsourceid><addsrcrecordid>eNpdkDtPwzAUhS0EEqWwMkdiYUnxteMkHhigKoWqKo-CKrFYjuO0Lm4S4ka0_55ERRlY7kvfObo6CF0CHgDG5KZ0Tg4IBko4BnKEehCHxA8p8ONuxvgUnTm3xjhgQQQ9dDvaKbPRlWela2palCZferVr68osV3bf3nTqOWONKnIvl3lRymprlNXuHJ1k0jp98df76ONh9D589KfP46fh3dRXNODEl1maYqY4SyjDIQkhVDSTmGRxElMIIIpDTCBJIEiyiCuZEkYSxTKSRQFhkaR9dH3wLaviu9ZuKzbGKW2tzHVRO9E6AAs5jhv06h-6Luoqb74TEDDOaMyANxQ_UD_G6r0oK7OR1V4AFm2Uoo1SdFGKl_n8rtsarX_QGrfVu04rqy8RRjRiYjEbi7fP4f3rZLYQE_oL9S54dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1459538519</pqid></control><display><type>article</type><title>Excimer laser doping using highly doped silicon nanoparticles</title><source>Access via Wiley Online Library</source><creator>Meseth, Martin ; Kunert, Bernd Christian ; Bitzer, Lucas ; Kunze, Frederik ; Meyer, Sebastian ; Kiefer, Fabian ; Dehnen, Martin ; Orthner, Hans ; Petermann, Nils ; Kummer, Malin ; Wiggers, Hartmut ; Harder, Nils-Peter ; Benson, Niels ; Schmechel, Roland</creator><creatorcontrib>Meseth, Martin ; Kunert, Bernd Christian ; Bitzer, Lucas ; Kunze, Frederik ; Meyer, Sebastian ; Kiefer, Fabian ; Dehnen, Martin ; Orthner, Hans ; Petermann, Nils ; Kummer, Malin ; Wiggers, Hartmut ; Harder, Nils-Peter ; Benson, Niels ; Schmechel, Roland</creatorcontrib><description>Laser doping of crystalline Si (c‐Si) using highly doped Si nanoparticles (NPs) as the dopant source is investigated. For this purpose Si NPs are deposited onto c‐Si substrates from dispersion using a spin coater and subsequently laser annealed by scanning over the sample with a 248 nm line profile excimer laser. Scanning electron microscope (SEM) investigations demonstrate that the laser intensity as well as the oxide concentration in the NP thin film strongly influence the film forming properties of the annealed NPs. Substrate doping is substantiated using electrochemical capacitance voltage (ECV) measurements on realized pn‐junctions. In dependence of the laser fluencies ranging from 0.81 to 2.54 J cm−2, the effective doping depth is determined to be in the range of 50 to 250 nm. The rectifying behaviour of the pn‐ or np‐junctions is verified by current voltage measurements. A homogeneous in‐plane doping distribution realized by the laser doping process is demonstrated on the µm scale by light beam induced current measurements.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.201329012</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Annealing ; Doping ; Excimer lasers ; laser doping ; Lasers ; Nanoparticles ; Scanning electron microscopy ; Silicon ; Silicon substrates ; solar cells</subject><ispartof>Physica status solidi. A, Applications and materials science, 2013-11, Vol.210 (11), p.2456-2462</ispartof><rights>2013 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3492-afdd05c95b35062616c3fa02f8b83141786021bb14bf79cad252bc5f2f74257a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.201329012$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.201329012$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Meseth, Martin</creatorcontrib><creatorcontrib>Kunert, Bernd Christian</creatorcontrib><creatorcontrib>Bitzer, Lucas</creatorcontrib><creatorcontrib>Kunze, Frederik</creatorcontrib><creatorcontrib>Meyer, Sebastian</creatorcontrib><creatorcontrib>Kiefer, Fabian</creatorcontrib><creatorcontrib>Dehnen, Martin</creatorcontrib><creatorcontrib>Orthner, Hans</creatorcontrib><creatorcontrib>Petermann, Nils</creatorcontrib><creatorcontrib>Kummer, Malin</creatorcontrib><creatorcontrib>Wiggers, Hartmut</creatorcontrib><creatorcontrib>Harder, Nils-Peter</creatorcontrib><creatorcontrib>Benson, Niels</creatorcontrib><creatorcontrib>Schmechel, Roland</creatorcontrib><title>Excimer laser doping using highly doped silicon nanoparticles</title><title>Physica status solidi. A, Applications and materials science</title><addtitle>Phys. Status Solidi A</addtitle><description>Laser doping of crystalline Si (c‐Si) using highly doped Si nanoparticles (NPs) as the dopant source is investigated. For this purpose Si NPs are deposited onto c‐Si substrates from dispersion using a spin coater and subsequently laser annealed by scanning over the sample with a 248 nm line profile excimer laser. Scanning electron microscope (SEM) investigations demonstrate that the laser intensity as well as the oxide concentration in the NP thin film strongly influence the film forming properties of the annealed NPs. Substrate doping is substantiated using electrochemical capacitance voltage (ECV) measurements on realized pn‐junctions. In dependence of the laser fluencies ranging from 0.81 to 2.54 J cm−2, the effective doping depth is determined to be in the range of 50 to 250 nm. The rectifying behaviour of the pn‐ or np‐junctions is verified by current voltage measurements. A homogeneous in‐plane doping distribution realized by the laser doping process is demonstrated on the µm scale by light beam induced current measurements.</description><subject>Annealing</subject><subject>Doping</subject><subject>Excimer lasers</subject><subject>laser doping</subject><subject>Lasers</subject><subject>Nanoparticles</subject><subject>Scanning electron microscopy</subject><subject>Silicon</subject><subject>Silicon substrates</subject><subject>solar cells</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkDtPwzAUhS0EEqWwMkdiYUnxteMkHhigKoWqKo-CKrFYjuO0Lm4S4ka0_55ERRlY7kvfObo6CF0CHgDG5KZ0Tg4IBko4BnKEehCHxA8p8ONuxvgUnTm3xjhgQQQ9dDvaKbPRlWela2palCZferVr68osV3bf3nTqOWONKnIvl3lRymprlNXuHJ1k0jp98df76ONh9D589KfP46fh3dRXNODEl1maYqY4SyjDIQkhVDSTmGRxElMIIIpDTCBJIEiyiCuZEkYSxTKSRQFhkaR9dH3wLaviu9ZuKzbGKW2tzHVRO9E6AAs5jhv06h-6Luoqb74TEDDOaMyANxQ_UD_G6r0oK7OR1V4AFm2Uoo1SdFGKl_n8rtsarX_QGrfVu04rqy8RRjRiYjEbi7fP4f3rZLYQE_oL9S54dw</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Meseth, Martin</creator><creator>Kunert, Bernd Christian</creator><creator>Bitzer, Lucas</creator><creator>Kunze, Frederik</creator><creator>Meyer, Sebastian</creator><creator>Kiefer, Fabian</creator><creator>Dehnen, Martin</creator><creator>Orthner, Hans</creator><creator>Petermann, Nils</creator><creator>Kummer, Malin</creator><creator>Wiggers, Hartmut</creator><creator>Harder, Nils-Peter</creator><creator>Benson, Niels</creator><creator>Schmechel, Roland</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201311</creationdate><title>Excimer laser doping using highly doped silicon nanoparticles</title><author>Meseth, Martin ; Kunert, Bernd Christian ; Bitzer, Lucas ; Kunze, Frederik ; Meyer, Sebastian ; Kiefer, Fabian ; Dehnen, Martin ; Orthner, Hans ; Petermann, Nils ; Kummer, Malin ; Wiggers, Hartmut ; Harder, Nils-Peter ; Benson, Niels ; Schmechel, Roland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3492-afdd05c95b35062616c3fa02f8b83141786021bb14bf79cad252bc5f2f74257a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Annealing</topic><topic>Doping</topic><topic>Excimer lasers</topic><topic>laser doping</topic><topic>Lasers</topic><topic>Nanoparticles</topic><topic>Scanning electron microscopy</topic><topic>Silicon</topic><topic>Silicon substrates</topic><topic>solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meseth, Martin</creatorcontrib><creatorcontrib>Kunert, Bernd Christian</creatorcontrib><creatorcontrib>Bitzer, Lucas</creatorcontrib><creatorcontrib>Kunze, Frederik</creatorcontrib><creatorcontrib>Meyer, Sebastian</creatorcontrib><creatorcontrib>Kiefer, Fabian</creatorcontrib><creatorcontrib>Dehnen, Martin</creatorcontrib><creatorcontrib>Orthner, Hans</creatorcontrib><creatorcontrib>Petermann, Nils</creatorcontrib><creatorcontrib>Kummer, Malin</creatorcontrib><creatorcontrib>Wiggers, Hartmut</creatorcontrib><creatorcontrib>Harder, Nils-Peter</creatorcontrib><creatorcontrib>Benson, Niels</creatorcontrib><creatorcontrib>Schmechel, Roland</creatorcontrib><collection>Istex</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meseth, Martin</au><au>Kunert, Bernd Christian</au><au>Bitzer, Lucas</au><au>Kunze, Frederik</au><au>Meyer, Sebastian</au><au>Kiefer, Fabian</au><au>Dehnen, Martin</au><au>Orthner, Hans</au><au>Petermann, Nils</au><au>Kummer, Malin</au><au>Wiggers, Hartmut</au><au>Harder, Nils-Peter</au><au>Benson, Niels</au><au>Schmechel, Roland</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excimer laser doping using highly doped silicon nanoparticles</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><addtitle>Phys. Status Solidi A</addtitle><date>2013-11</date><risdate>2013</risdate><volume>210</volume><issue>11</issue><spage>2456</spage><epage>2462</epage><pages>2456-2462</pages><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Laser doping of crystalline Si (c‐Si) using highly doped Si nanoparticles (NPs) as the dopant source is investigated. For this purpose Si NPs are deposited onto c‐Si substrates from dispersion using a spin coater and subsequently laser annealed by scanning over the sample with a 248 nm line profile excimer laser. Scanning electron microscope (SEM) investigations demonstrate that the laser intensity as well as the oxide concentration in the NP thin film strongly influence the film forming properties of the annealed NPs. Substrate doping is substantiated using electrochemical capacitance voltage (ECV) measurements on realized pn‐junctions. In dependence of the laser fluencies ranging from 0.81 to 2.54 J cm−2, the effective doping depth is determined to be in the range of 50 to 250 nm. The rectifying behaviour of the pn‐ or np‐junctions is verified by current voltage measurements. A homogeneous in‐plane doping distribution realized by the laser doping process is demonstrated on the µm scale by light beam induced current measurements.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/pssa.201329012</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2013-11, Vol.210 (11), p.2456-2462
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_miscellaneous_1786156908
source Access via Wiley Online Library
subjects Annealing
Doping
Excimer lasers
laser doping
Lasers
Nanoparticles
Scanning electron microscopy
Silicon
Silicon substrates
solar cells
title Excimer laser doping using highly doped silicon nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T01%3A05%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excimer%20laser%20doping%20using%20highly%20doped%20silicon%20nanoparticles&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Meseth,%20Martin&rft.date=2013-11&rft.volume=210&rft.issue=11&rft.spage=2456&rft.epage=2462&rft.pages=2456-2462&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.201329012&rft_dat=%3Cproquest_wiley%3E1786156908%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1459538519&rft_id=info:pmid/&rfr_iscdi=true