Excimer laser doping using highly doped silicon nanoparticles
Laser doping of crystalline Si (c‐Si) using highly doped Si nanoparticles (NPs) as the dopant source is investigated. For this purpose Si NPs are deposited onto c‐Si substrates from dispersion using a spin coater and subsequently laser annealed by scanning over the sample with a 248 nm line profile...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2013-11, Vol.210 (11), p.2456-2462 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2462 |
---|---|
container_issue | 11 |
container_start_page | 2456 |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | 210 |
creator | Meseth, Martin Kunert, Bernd Christian Bitzer, Lucas Kunze, Frederik Meyer, Sebastian Kiefer, Fabian Dehnen, Martin Orthner, Hans Petermann, Nils Kummer, Malin Wiggers, Hartmut Harder, Nils-Peter Benson, Niels Schmechel, Roland |
description | Laser doping of crystalline Si (c‐Si) using highly doped Si nanoparticles (NPs) as the dopant source is investigated. For this purpose Si NPs are deposited onto c‐Si substrates from dispersion using a spin coater and subsequently laser annealed by scanning over the sample with a 248 nm line profile excimer laser. Scanning electron microscope (SEM) investigations demonstrate that the laser intensity as well as the oxide concentration in the NP thin film strongly influence the film forming properties of the annealed NPs.
Substrate doping is substantiated using electrochemical capacitance voltage (ECV) measurements on realized pn‐junctions. In dependence of the laser fluencies ranging from 0.81 to 2.54 J cm−2, the effective doping depth is determined to be in the range of 50 to 250 nm. The rectifying behaviour of the pn‐ or np‐junctions is verified by current voltage measurements. A homogeneous in‐plane doping distribution realized by the laser doping process is demonstrated on the µm scale by light beam induced current measurements. |
doi_str_mv | 10.1002/pssa.201329012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786156908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786156908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3492-afdd05c95b35062616c3fa02f8b83141786021bb14bf79cad252bc5f2f74257a3</originalsourceid><addsrcrecordid>eNpdkDtPwzAUhS0EEqWwMkdiYUnxteMkHhigKoWqKo-CKrFYjuO0Lm4S4ka0_55ERRlY7kvfObo6CF0CHgDG5KZ0Tg4IBko4BnKEehCHxA8p8ONuxvgUnTm3xjhgQQQ9dDvaKbPRlWela2palCZferVr68osV3bf3nTqOWONKnIvl3lRymprlNXuHJ1k0jp98df76ONh9D589KfP46fh3dRXNODEl1maYqY4SyjDIQkhVDSTmGRxElMIIIpDTCBJIEiyiCuZEkYSxTKSRQFhkaR9dH3wLaviu9ZuKzbGKW2tzHVRO9E6AAs5jhv06h-6Luoqb74TEDDOaMyANxQ_UD_G6r0oK7OR1V4AFm2Uoo1SdFGKl_n8rtsarX_QGrfVu04rqy8RRjRiYjEbi7fP4f3rZLYQE_oL9S54dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1459538519</pqid></control><display><type>article</type><title>Excimer laser doping using highly doped silicon nanoparticles</title><source>Access via Wiley Online Library</source><creator>Meseth, Martin ; Kunert, Bernd Christian ; Bitzer, Lucas ; Kunze, Frederik ; Meyer, Sebastian ; Kiefer, Fabian ; Dehnen, Martin ; Orthner, Hans ; Petermann, Nils ; Kummer, Malin ; Wiggers, Hartmut ; Harder, Nils-Peter ; Benson, Niels ; Schmechel, Roland</creator><creatorcontrib>Meseth, Martin ; Kunert, Bernd Christian ; Bitzer, Lucas ; Kunze, Frederik ; Meyer, Sebastian ; Kiefer, Fabian ; Dehnen, Martin ; Orthner, Hans ; Petermann, Nils ; Kummer, Malin ; Wiggers, Hartmut ; Harder, Nils-Peter ; Benson, Niels ; Schmechel, Roland</creatorcontrib><description>Laser doping of crystalline Si (c‐Si) using highly doped Si nanoparticles (NPs) as the dopant source is investigated. For this purpose Si NPs are deposited onto c‐Si substrates from dispersion using a spin coater and subsequently laser annealed by scanning over the sample with a 248 nm line profile excimer laser. Scanning electron microscope (SEM) investigations demonstrate that the laser intensity as well as the oxide concentration in the NP thin film strongly influence the film forming properties of the annealed NPs.
Substrate doping is substantiated using electrochemical capacitance voltage (ECV) measurements on realized pn‐junctions. In dependence of the laser fluencies ranging from 0.81 to 2.54 J cm−2, the effective doping depth is determined to be in the range of 50 to 250 nm. The rectifying behaviour of the pn‐ or np‐junctions is verified by current voltage measurements. A homogeneous in‐plane doping distribution realized by the laser doping process is demonstrated on the µm scale by light beam induced current measurements.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.201329012</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Annealing ; Doping ; Excimer lasers ; laser doping ; Lasers ; Nanoparticles ; Scanning electron microscopy ; Silicon ; Silicon substrates ; solar cells</subject><ispartof>Physica status solidi. A, Applications and materials science, 2013-11, Vol.210 (11), p.2456-2462</ispartof><rights>2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3492-afdd05c95b35062616c3fa02f8b83141786021bb14bf79cad252bc5f2f74257a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.201329012$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.201329012$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Meseth, Martin</creatorcontrib><creatorcontrib>Kunert, Bernd Christian</creatorcontrib><creatorcontrib>Bitzer, Lucas</creatorcontrib><creatorcontrib>Kunze, Frederik</creatorcontrib><creatorcontrib>Meyer, Sebastian</creatorcontrib><creatorcontrib>Kiefer, Fabian</creatorcontrib><creatorcontrib>Dehnen, Martin</creatorcontrib><creatorcontrib>Orthner, Hans</creatorcontrib><creatorcontrib>Petermann, Nils</creatorcontrib><creatorcontrib>Kummer, Malin</creatorcontrib><creatorcontrib>Wiggers, Hartmut</creatorcontrib><creatorcontrib>Harder, Nils-Peter</creatorcontrib><creatorcontrib>Benson, Niels</creatorcontrib><creatorcontrib>Schmechel, Roland</creatorcontrib><title>Excimer laser doping using highly doped silicon nanoparticles</title><title>Physica status solidi. A, Applications and materials science</title><addtitle>Phys. Status Solidi A</addtitle><description>Laser doping of crystalline Si (c‐Si) using highly doped Si nanoparticles (NPs) as the dopant source is investigated. For this purpose Si NPs are deposited onto c‐Si substrates from dispersion using a spin coater and subsequently laser annealed by scanning over the sample with a 248 nm line profile excimer laser. Scanning electron microscope (SEM) investigations demonstrate that the laser intensity as well as the oxide concentration in the NP thin film strongly influence the film forming properties of the annealed NPs.
Substrate doping is substantiated using electrochemical capacitance voltage (ECV) measurements on realized pn‐junctions. In dependence of the laser fluencies ranging from 0.81 to 2.54 J cm−2, the effective doping depth is determined to be in the range of 50 to 250 nm. The rectifying behaviour of the pn‐ or np‐junctions is verified by current voltage measurements. A homogeneous in‐plane doping distribution realized by the laser doping process is demonstrated on the µm scale by light beam induced current measurements.</description><subject>Annealing</subject><subject>Doping</subject><subject>Excimer lasers</subject><subject>laser doping</subject><subject>Lasers</subject><subject>Nanoparticles</subject><subject>Scanning electron microscopy</subject><subject>Silicon</subject><subject>Silicon substrates</subject><subject>solar cells</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkDtPwzAUhS0EEqWwMkdiYUnxteMkHhigKoWqKo-CKrFYjuO0Lm4S4ka0_55ERRlY7kvfObo6CF0CHgDG5KZ0Tg4IBko4BnKEehCHxA8p8ONuxvgUnTm3xjhgQQQ9dDvaKbPRlWela2palCZferVr68osV3bf3nTqOWONKnIvl3lRymprlNXuHJ1k0jp98df76ONh9D589KfP46fh3dRXNODEl1maYqY4SyjDIQkhVDSTmGRxElMIIIpDTCBJIEiyiCuZEkYSxTKSRQFhkaR9dH3wLaviu9ZuKzbGKW2tzHVRO9E6AAs5jhv06h-6Luoqb74TEDDOaMyANxQ_UD_G6r0oK7OR1V4AFm2Uoo1SdFGKl_n8rtsarX_QGrfVu04rqy8RRjRiYjEbi7fP4f3rZLYQE_oL9S54dw</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Meseth, Martin</creator><creator>Kunert, Bernd Christian</creator><creator>Bitzer, Lucas</creator><creator>Kunze, Frederik</creator><creator>Meyer, Sebastian</creator><creator>Kiefer, Fabian</creator><creator>Dehnen, Martin</creator><creator>Orthner, Hans</creator><creator>Petermann, Nils</creator><creator>Kummer, Malin</creator><creator>Wiggers, Hartmut</creator><creator>Harder, Nils-Peter</creator><creator>Benson, Niels</creator><creator>Schmechel, Roland</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201311</creationdate><title>Excimer laser doping using highly doped silicon nanoparticles</title><author>Meseth, Martin ; Kunert, Bernd Christian ; Bitzer, Lucas ; Kunze, Frederik ; Meyer, Sebastian ; Kiefer, Fabian ; Dehnen, Martin ; Orthner, Hans ; Petermann, Nils ; Kummer, Malin ; Wiggers, Hartmut ; Harder, Nils-Peter ; Benson, Niels ; Schmechel, Roland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3492-afdd05c95b35062616c3fa02f8b83141786021bb14bf79cad252bc5f2f74257a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Annealing</topic><topic>Doping</topic><topic>Excimer lasers</topic><topic>laser doping</topic><topic>Lasers</topic><topic>Nanoparticles</topic><topic>Scanning electron microscopy</topic><topic>Silicon</topic><topic>Silicon substrates</topic><topic>solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meseth, Martin</creatorcontrib><creatorcontrib>Kunert, Bernd Christian</creatorcontrib><creatorcontrib>Bitzer, Lucas</creatorcontrib><creatorcontrib>Kunze, Frederik</creatorcontrib><creatorcontrib>Meyer, Sebastian</creatorcontrib><creatorcontrib>Kiefer, Fabian</creatorcontrib><creatorcontrib>Dehnen, Martin</creatorcontrib><creatorcontrib>Orthner, Hans</creatorcontrib><creatorcontrib>Petermann, Nils</creatorcontrib><creatorcontrib>Kummer, Malin</creatorcontrib><creatorcontrib>Wiggers, Hartmut</creatorcontrib><creatorcontrib>Harder, Nils-Peter</creatorcontrib><creatorcontrib>Benson, Niels</creatorcontrib><creatorcontrib>Schmechel, Roland</creatorcontrib><collection>Istex</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meseth, Martin</au><au>Kunert, Bernd Christian</au><au>Bitzer, Lucas</au><au>Kunze, Frederik</au><au>Meyer, Sebastian</au><au>Kiefer, Fabian</au><au>Dehnen, Martin</au><au>Orthner, Hans</au><au>Petermann, Nils</au><au>Kummer, Malin</au><au>Wiggers, Hartmut</au><au>Harder, Nils-Peter</au><au>Benson, Niels</au><au>Schmechel, Roland</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excimer laser doping using highly doped silicon nanoparticles</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><addtitle>Phys. Status Solidi A</addtitle><date>2013-11</date><risdate>2013</risdate><volume>210</volume><issue>11</issue><spage>2456</spage><epage>2462</epage><pages>2456-2462</pages><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Laser doping of crystalline Si (c‐Si) using highly doped Si nanoparticles (NPs) as the dopant source is investigated. For this purpose Si NPs are deposited onto c‐Si substrates from dispersion using a spin coater and subsequently laser annealed by scanning over the sample with a 248 nm line profile excimer laser. Scanning electron microscope (SEM) investigations demonstrate that the laser intensity as well as the oxide concentration in the NP thin film strongly influence the film forming properties of the annealed NPs.
Substrate doping is substantiated using electrochemical capacitance voltage (ECV) measurements on realized pn‐junctions. In dependence of the laser fluencies ranging from 0.81 to 2.54 J cm−2, the effective doping depth is determined to be in the range of 50 to 250 nm. The rectifying behaviour of the pn‐ or np‐junctions is verified by current voltage measurements. A homogeneous in‐plane doping distribution realized by the laser doping process is demonstrated on the µm scale by light beam induced current measurements.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/pssa.201329012</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2013-11, Vol.210 (11), p.2456-2462 |
issn | 1862-6300 1862-6319 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786156908 |
source | Access via Wiley Online Library |
subjects | Annealing Doping Excimer lasers laser doping Lasers Nanoparticles Scanning electron microscopy Silicon Silicon substrates solar cells |
title | Excimer laser doping using highly doped silicon nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T01%3A05%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excimer%20laser%20doping%20using%20highly%20doped%20silicon%20nanoparticles&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Meseth,%20Martin&rft.date=2013-11&rft.volume=210&rft.issue=11&rft.spage=2456&rft.epage=2462&rft.pages=2456-2462&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.201329012&rft_dat=%3Cproquest_wiley%3E1786156908%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1459538519&rft_id=info:pmid/&rfr_iscdi=true |