On the widths of the Arnol’d tongues

Let $F: \mathbb{R} \rightarrow \mathbb{R} $ be a real analytic increasing diffeomorphism with $F- \mathrm{Id} $ being 1-periodic. Consider the translated family of maps $\mathop{({F}_{t} : \mathbb{R} \rightarrow \mathbb{R} )}\nolimits_{t\in \mathbb{R} } $ defined as ${F}_{t} (x)= F(x)+ t$. Let $\mat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2014-10, Vol.34 (5), p.1451-1463
1. Verfasser: BANERJEE, KUNTAL
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $F: \mathbb{R} \rightarrow \mathbb{R} $ be a real analytic increasing diffeomorphism with $F- \mathrm{Id} $ being 1-periodic. Consider the translated family of maps $\mathop{({F}_{t} : \mathbb{R} \rightarrow \mathbb{R} )}\nolimits_{t\in \mathbb{R} } $ defined as ${F}_{t} (x)= F(x)+ t$. Let $\mathrm{Trans} ({F}_{t} )$ be the translation number of ${F}_{t} $ defined by $$\mathrm{Trans} ({F}_{t} ): = \lim _{n\rightarrow + \infty }\frac{{ F}_{t}^{\circ n} - \mathrm{Id} }{n} .$$ Assume that there is a Herman ring of modulus $2\tau $ associated to $F$ and let ${p}_{n} / {q}_{n} $ be the $n$th convergent of $\mathrm{Trans} (F)= \alpha \in \mathbb{R} \setminus \mathbb{Q} $. Denoting by ${\ell }_{\theta } $ the length of the interval $\{ t\in \mathbb{R} ~\mid ~\mathrm{Trans} ({F}_{t} )= \theta \} $, we prove that the sequence $({\ell }_{{p}_{n} / {q}_{n} } )$ decreases exponentially fast with respect to ${q}_{n} $. More precisely, $$\mathop {\mathrm{lim\hphantom{,}sup} }\limits _{n\rightarrow + \infty } \frac{1}{{q}_{n} } \log {\ell }_{{p}_{n} / {q}_{n} } \leq - 2\pi \tau .$$ There is a relation between ${\ell }_{{p}_{n} / {q}_{n} } $ and the width of the Arnol’d tongue, which confirms that the widths of the tongues decrease exponentially fast under suitable conditions.
ISSN:0143-3857
1469-4417
DOI:10.1017/etds.2013.11