A combined experimental and numerical investigation of roughness induced supersonic boundary layer transition
The effect of surface roughness on boundary layer transition is of great importance to hypersonic vehicles. In this paper, both experimental and numerical methods are used to investigate the laminar-turbulent transition of a Mach 3 flat-plate boundary layer induced by isolated roughness element. Goo...
Gespeichert in:
Veröffentlicht in: | Acta astronautica 2016-01, Vol.118, p.199-209 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 209 |
---|---|
container_issue | |
container_start_page | 199 |
container_title | Acta astronautica |
container_volume | 118 |
creator | Zhao, Yunfei Liu, Wei Xu, Dan Gang, Dundian Yi, Shihe |
description | The effect of surface roughness on boundary layer transition is of great importance to hypersonic vehicles. In this paper, both experimental and numerical methods are used to investigate the laminar-turbulent transition of a Mach 3 flat-plate boundary layer induced by isolated roughness element. Good agreements are achieved between experimental data and high-order numerical simulations. It is observed that, with increasing height of roughness, the transition tends to move forward. Two different types of transition mechanisms are found according to the height of the roughness elements. For the smallest roughness height of h=1mm, the shear layer instability in the wake region appears to be the leading mechanism for transition to turbulence. For two larger roughness elements of h=2mm and h=4mm, strong unsteadiness is developed from the upstream separation zone and transition is immediately accomplished, which indicates that the absolute instability in upstream separation zone dominates the transition.
•Roughness induced transition is studied using experimental and numerical methods.•Good agreements are achieved between experimental results and numerical results.•With increasing height of roughness, the transition tends to move forward.•Two different types of transition mechanisms are found in this study. |
doi_str_mv | 10.1016/j.actaastro.2015.10.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786155052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0094576515003793</els_id><sourcerecordid>1785238532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-441fdb5c1464c4024e715cdbb5fc9e7093d888a9b8f82235c877c816c4f74c9b3</originalsourceid><addsrcrecordid>eNqNkctOxDAMRSMEEsPjG8iSTYekTZp0OUK8JCQ2sI5S14WM2mRIWgR_T6pBbGFl2b7Hsn0JueBszRmvr7ZrC5O1aYphXTIuc3XNmD4gK65VU5SsYodkxVgjCqlqeUxOUtoyxlSpmxUZNxTC2DqPHcXPHUY3op_sQK3vqJ_HXICcOf-BaXKvdnLB09DTGObXN48p5VY3Q6bTnOkUvAPahtl3Nn7RwX5hpFO0PrmFPCNHvR0Snv_EU_Jye_N8fV88Pt09XG8eC6g0nwoheN-1ErioBQhWClRcQte2socGFWuqTmttm1b3uiwrCVop0LwG0SsBTVudksv93F0M73Pe3IwuAQ6D9RjmZLjSNZeSyfI_0qzSslqkai-FGFKK2Jtdfle-03BmFi_M1vx6YRYvlkb2IpObPYn56A-H0SRw6PPbXESYTBfcnzO-AX5CmXk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1785238532</pqid></control><display><type>article</type><title>A combined experimental and numerical investigation of roughness induced supersonic boundary layer transition</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zhao, Yunfei ; Liu, Wei ; Xu, Dan ; Gang, Dundian ; Yi, Shihe</creator><creatorcontrib>Zhao, Yunfei ; Liu, Wei ; Xu, Dan ; Gang, Dundian ; Yi, Shihe</creatorcontrib><description>The effect of surface roughness on boundary layer transition is of great importance to hypersonic vehicles. In this paper, both experimental and numerical methods are used to investigate the laminar-turbulent transition of a Mach 3 flat-plate boundary layer induced by isolated roughness element. Good agreements are achieved between experimental data and high-order numerical simulations. It is observed that, with increasing height of roughness, the transition tends to move forward. Two different types of transition mechanisms are found according to the height of the roughness elements. For the smallest roughness height of h=1mm, the shear layer instability in the wake region appears to be the leading mechanism for transition to turbulence. For two larger roughness elements of h=2mm and h=4mm, strong unsteadiness is developed from the upstream separation zone and transition is immediately accomplished, which indicates that the absolute instability in upstream separation zone dominates the transition.
•Roughness induced transition is studied using experimental and numerical methods.•Good agreements are achieved between experimental results and numerical results.•With increasing height of roughness, the transition tends to move forward.•Two different types of transition mechanisms are found in this study.</description><identifier>ISSN: 0094-5765</identifier><identifier>EISSN: 1879-2030</identifier><identifier>DOI: 10.1016/j.actaastro.2015.10.008</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Boundary layer transition ; Experiment ; Hypersonic vehicles ; Instability ; Mathematical models ; Numerical simulation ; Roughness ; Separation ; Shear layers ; Stability ; Supersonic ; Surface roughness ; Upstream</subject><ispartof>Acta astronautica, 2016-01, Vol.118, p.199-209</ispartof><rights>2015 IAA</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-441fdb5c1464c4024e715cdbb5fc9e7093d888a9b8f82235c877c816c4f74c9b3</citedby><cites>FETCH-LOGICAL-c381t-441fdb5c1464c4024e715cdbb5fc9e7093d888a9b8f82235c877c816c4f74c9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actaastro.2015.10.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zhao, Yunfei</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Xu, Dan</creatorcontrib><creatorcontrib>Gang, Dundian</creatorcontrib><creatorcontrib>Yi, Shihe</creatorcontrib><title>A combined experimental and numerical investigation of roughness induced supersonic boundary layer transition</title><title>Acta astronautica</title><description>The effect of surface roughness on boundary layer transition is of great importance to hypersonic vehicles. In this paper, both experimental and numerical methods are used to investigate the laminar-turbulent transition of a Mach 3 flat-plate boundary layer induced by isolated roughness element. Good agreements are achieved between experimental data and high-order numerical simulations. It is observed that, with increasing height of roughness, the transition tends to move forward. Two different types of transition mechanisms are found according to the height of the roughness elements. For the smallest roughness height of h=1mm, the shear layer instability in the wake region appears to be the leading mechanism for transition to turbulence. For two larger roughness elements of h=2mm and h=4mm, strong unsteadiness is developed from the upstream separation zone and transition is immediately accomplished, which indicates that the absolute instability in upstream separation zone dominates the transition.
•Roughness induced transition is studied using experimental and numerical methods.•Good agreements are achieved between experimental results and numerical results.•With increasing height of roughness, the transition tends to move forward.•Two different types of transition mechanisms are found in this study.</description><subject>Boundary layer transition</subject><subject>Experiment</subject><subject>Hypersonic vehicles</subject><subject>Instability</subject><subject>Mathematical models</subject><subject>Numerical simulation</subject><subject>Roughness</subject><subject>Separation</subject><subject>Shear layers</subject><subject>Stability</subject><subject>Supersonic</subject><subject>Surface roughness</subject><subject>Upstream</subject><issn>0094-5765</issn><issn>1879-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkctOxDAMRSMEEsPjG8iSTYekTZp0OUK8JCQ2sI5S14WM2mRIWgR_T6pBbGFl2b7Hsn0JueBszRmvr7ZrC5O1aYphXTIuc3XNmD4gK65VU5SsYodkxVgjCqlqeUxOUtoyxlSpmxUZNxTC2DqPHcXPHUY3op_sQK3vqJ_HXICcOf-BaXKvdnLB09DTGObXN48p5VY3Q6bTnOkUvAPahtl3Nn7RwX5hpFO0PrmFPCNHvR0Snv_EU_Jye_N8fV88Pt09XG8eC6g0nwoheN-1ErioBQhWClRcQte2socGFWuqTmttm1b3uiwrCVop0LwG0SsBTVudksv93F0M73Pe3IwuAQ6D9RjmZLjSNZeSyfI_0qzSslqkai-FGFKK2Jtdfle-03BmFi_M1vx6YRYvlkb2IpObPYn56A-H0SRw6PPbXESYTBfcnzO-AX5CmXk</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Zhao, Yunfei</creator><creator>Liu, Wei</creator><creator>Xu, Dan</creator><creator>Gang, Dundian</creator><creator>Yi, Shihe</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201601</creationdate><title>A combined experimental and numerical investigation of roughness induced supersonic boundary layer transition</title><author>Zhao, Yunfei ; Liu, Wei ; Xu, Dan ; Gang, Dundian ; Yi, Shihe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-441fdb5c1464c4024e715cdbb5fc9e7093d888a9b8f82235c877c816c4f74c9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Boundary layer transition</topic><topic>Experiment</topic><topic>Hypersonic vehicles</topic><topic>Instability</topic><topic>Mathematical models</topic><topic>Numerical simulation</topic><topic>Roughness</topic><topic>Separation</topic><topic>Shear layers</topic><topic>Stability</topic><topic>Supersonic</topic><topic>Surface roughness</topic><topic>Upstream</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yunfei</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Xu, Dan</creatorcontrib><creatorcontrib>Gang, Dundian</creatorcontrib><creatorcontrib>Yi, Shihe</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta astronautica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yunfei</au><au>Liu, Wei</au><au>Xu, Dan</au><au>Gang, Dundian</au><au>Yi, Shihe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A combined experimental and numerical investigation of roughness induced supersonic boundary layer transition</atitle><jtitle>Acta astronautica</jtitle><date>2016-01</date><risdate>2016</risdate><volume>118</volume><spage>199</spage><epage>209</epage><pages>199-209</pages><issn>0094-5765</issn><eissn>1879-2030</eissn><abstract>The effect of surface roughness on boundary layer transition is of great importance to hypersonic vehicles. In this paper, both experimental and numerical methods are used to investigate the laminar-turbulent transition of a Mach 3 flat-plate boundary layer induced by isolated roughness element. Good agreements are achieved between experimental data and high-order numerical simulations. It is observed that, with increasing height of roughness, the transition tends to move forward. Two different types of transition mechanisms are found according to the height of the roughness elements. For the smallest roughness height of h=1mm, the shear layer instability in the wake region appears to be the leading mechanism for transition to turbulence. For two larger roughness elements of h=2mm and h=4mm, strong unsteadiness is developed from the upstream separation zone and transition is immediately accomplished, which indicates that the absolute instability in upstream separation zone dominates the transition.
•Roughness induced transition is studied using experimental and numerical methods.•Good agreements are achieved between experimental results and numerical results.•With increasing height of roughness, the transition tends to move forward.•Two different types of transition mechanisms are found in this study.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.actaastro.2015.10.008</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-5765 |
ispartof | Acta astronautica, 2016-01, Vol.118, p.199-209 |
issn | 0094-5765 1879-2030 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786155052 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Boundary layer transition Experiment Hypersonic vehicles Instability Mathematical models Numerical simulation Roughness Separation Shear layers Stability Supersonic Surface roughness Upstream |
title | A combined experimental and numerical investigation of roughness induced supersonic boundary layer transition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T02%3A06%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20combined%20experimental%20and%20numerical%20investigation%20of%20roughness%20induced%20supersonic%20boundary%20layer%20transition&rft.jtitle=Acta%20astronautica&rft.au=Zhao,%20Yunfei&rft.date=2016-01&rft.volume=118&rft.spage=199&rft.epage=209&rft.pages=199-209&rft.issn=0094-5765&rft.eissn=1879-2030&rft_id=info:doi/10.1016/j.actaastro.2015.10.008&rft_dat=%3Cproquest_cross%3E1785238532%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1785238532&rft_id=info:pmid/&rft_els_id=S0094576515003793&rfr_iscdi=true |