A combined experimental and numerical investigation of roughness induced supersonic boundary layer transition

The effect of surface roughness on boundary layer transition is of great importance to hypersonic vehicles. In this paper, both experimental and numerical methods are used to investigate the laminar-turbulent transition of a Mach 3 flat-plate boundary layer induced by isolated roughness element. Goo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta astronautica 2016-01, Vol.118, p.199-209
Hauptverfasser: Zhao, Yunfei, Liu, Wei, Xu, Dan, Gang, Dundian, Yi, Shihe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 209
container_issue
container_start_page 199
container_title Acta astronautica
container_volume 118
creator Zhao, Yunfei
Liu, Wei
Xu, Dan
Gang, Dundian
Yi, Shihe
description The effect of surface roughness on boundary layer transition is of great importance to hypersonic vehicles. In this paper, both experimental and numerical methods are used to investigate the laminar-turbulent transition of a Mach 3 flat-plate boundary layer induced by isolated roughness element. Good agreements are achieved between experimental data and high-order numerical simulations. It is observed that, with increasing height of roughness, the transition tends to move forward. Two different types of transition mechanisms are found according to the height of the roughness elements. For the smallest roughness height of h=1mm, the shear layer instability in the wake region appears to be the leading mechanism for transition to turbulence. For two larger roughness elements of h=2mm and h=4mm, strong unsteadiness is developed from the upstream separation zone and transition is immediately accomplished, which indicates that the absolute instability in upstream separation zone dominates the transition. •Roughness induced transition is studied using experimental and numerical methods.•Good agreements are achieved between experimental results and numerical results.•With increasing height of roughness, the transition tends to move forward.•Two different types of transition mechanisms are found in this study.
doi_str_mv 10.1016/j.actaastro.2015.10.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786155052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0094576515003793</els_id><sourcerecordid>1785238532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-441fdb5c1464c4024e715cdbb5fc9e7093d888a9b8f82235c877c816c4f74c9b3</originalsourceid><addsrcrecordid>eNqNkctOxDAMRSMEEsPjG8iSTYekTZp0OUK8JCQ2sI5S14WM2mRIWgR_T6pBbGFl2b7Hsn0JueBszRmvr7ZrC5O1aYphXTIuc3XNmD4gK65VU5SsYodkxVgjCqlqeUxOUtoyxlSpmxUZNxTC2DqPHcXPHUY3op_sQK3vqJ_HXICcOf-BaXKvdnLB09DTGObXN48p5VY3Q6bTnOkUvAPahtl3Nn7RwX5hpFO0PrmFPCNHvR0Snv_EU_Jye_N8fV88Pt09XG8eC6g0nwoheN-1ErioBQhWClRcQte2socGFWuqTmttm1b3uiwrCVop0LwG0SsBTVudksv93F0M73Pe3IwuAQ6D9RjmZLjSNZeSyfI_0qzSslqkai-FGFKK2Jtdfle-03BmFi_M1vx6YRYvlkb2IpObPYn56A-H0SRw6PPbXESYTBfcnzO-AX5CmXk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1785238532</pqid></control><display><type>article</type><title>A combined experimental and numerical investigation of roughness induced supersonic boundary layer transition</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zhao, Yunfei ; Liu, Wei ; Xu, Dan ; Gang, Dundian ; Yi, Shihe</creator><creatorcontrib>Zhao, Yunfei ; Liu, Wei ; Xu, Dan ; Gang, Dundian ; Yi, Shihe</creatorcontrib><description>The effect of surface roughness on boundary layer transition is of great importance to hypersonic vehicles. In this paper, both experimental and numerical methods are used to investigate the laminar-turbulent transition of a Mach 3 flat-plate boundary layer induced by isolated roughness element. Good agreements are achieved between experimental data and high-order numerical simulations. It is observed that, with increasing height of roughness, the transition tends to move forward. Two different types of transition mechanisms are found according to the height of the roughness elements. For the smallest roughness height of h=1mm, the shear layer instability in the wake region appears to be the leading mechanism for transition to turbulence. For two larger roughness elements of h=2mm and h=4mm, strong unsteadiness is developed from the upstream separation zone and transition is immediately accomplished, which indicates that the absolute instability in upstream separation zone dominates the transition. •Roughness induced transition is studied using experimental and numerical methods.•Good agreements are achieved between experimental results and numerical results.•With increasing height of roughness, the transition tends to move forward.•Two different types of transition mechanisms are found in this study.</description><identifier>ISSN: 0094-5765</identifier><identifier>EISSN: 1879-2030</identifier><identifier>DOI: 10.1016/j.actaastro.2015.10.008</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Boundary layer transition ; Experiment ; Hypersonic vehicles ; Instability ; Mathematical models ; Numerical simulation ; Roughness ; Separation ; Shear layers ; Stability ; Supersonic ; Surface roughness ; Upstream</subject><ispartof>Acta astronautica, 2016-01, Vol.118, p.199-209</ispartof><rights>2015 IAA</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-441fdb5c1464c4024e715cdbb5fc9e7093d888a9b8f82235c877c816c4f74c9b3</citedby><cites>FETCH-LOGICAL-c381t-441fdb5c1464c4024e715cdbb5fc9e7093d888a9b8f82235c877c816c4f74c9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actaastro.2015.10.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zhao, Yunfei</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Xu, Dan</creatorcontrib><creatorcontrib>Gang, Dundian</creatorcontrib><creatorcontrib>Yi, Shihe</creatorcontrib><title>A combined experimental and numerical investigation of roughness induced supersonic boundary layer transition</title><title>Acta astronautica</title><description>The effect of surface roughness on boundary layer transition is of great importance to hypersonic vehicles. In this paper, both experimental and numerical methods are used to investigate the laminar-turbulent transition of a Mach 3 flat-plate boundary layer induced by isolated roughness element. Good agreements are achieved between experimental data and high-order numerical simulations. It is observed that, with increasing height of roughness, the transition tends to move forward. Two different types of transition mechanisms are found according to the height of the roughness elements. For the smallest roughness height of h=1mm, the shear layer instability in the wake region appears to be the leading mechanism for transition to turbulence. For two larger roughness elements of h=2mm and h=4mm, strong unsteadiness is developed from the upstream separation zone and transition is immediately accomplished, which indicates that the absolute instability in upstream separation zone dominates the transition. •Roughness induced transition is studied using experimental and numerical methods.•Good agreements are achieved between experimental results and numerical results.•With increasing height of roughness, the transition tends to move forward.•Two different types of transition mechanisms are found in this study.</description><subject>Boundary layer transition</subject><subject>Experiment</subject><subject>Hypersonic vehicles</subject><subject>Instability</subject><subject>Mathematical models</subject><subject>Numerical simulation</subject><subject>Roughness</subject><subject>Separation</subject><subject>Shear layers</subject><subject>Stability</subject><subject>Supersonic</subject><subject>Surface roughness</subject><subject>Upstream</subject><issn>0094-5765</issn><issn>1879-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkctOxDAMRSMEEsPjG8iSTYekTZp0OUK8JCQ2sI5S14WM2mRIWgR_T6pBbGFl2b7Hsn0JueBszRmvr7ZrC5O1aYphXTIuc3XNmD4gK65VU5SsYodkxVgjCqlqeUxOUtoyxlSpmxUZNxTC2DqPHcXPHUY3op_sQK3vqJ_HXICcOf-BaXKvdnLB09DTGObXN48p5VY3Q6bTnOkUvAPahtl3Nn7RwX5hpFO0PrmFPCNHvR0Snv_EU_Jye_N8fV88Pt09XG8eC6g0nwoheN-1ErioBQhWClRcQte2socGFWuqTmttm1b3uiwrCVop0LwG0SsBTVudksv93F0M73Pe3IwuAQ6D9RjmZLjSNZeSyfI_0qzSslqkai-FGFKK2Jtdfle-03BmFi_M1vx6YRYvlkb2IpObPYn56A-H0SRw6PPbXESYTBfcnzO-AX5CmXk</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Zhao, Yunfei</creator><creator>Liu, Wei</creator><creator>Xu, Dan</creator><creator>Gang, Dundian</creator><creator>Yi, Shihe</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201601</creationdate><title>A combined experimental and numerical investigation of roughness induced supersonic boundary layer transition</title><author>Zhao, Yunfei ; Liu, Wei ; Xu, Dan ; Gang, Dundian ; Yi, Shihe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-441fdb5c1464c4024e715cdbb5fc9e7093d888a9b8f82235c877c816c4f74c9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Boundary layer transition</topic><topic>Experiment</topic><topic>Hypersonic vehicles</topic><topic>Instability</topic><topic>Mathematical models</topic><topic>Numerical simulation</topic><topic>Roughness</topic><topic>Separation</topic><topic>Shear layers</topic><topic>Stability</topic><topic>Supersonic</topic><topic>Surface roughness</topic><topic>Upstream</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yunfei</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Xu, Dan</creatorcontrib><creatorcontrib>Gang, Dundian</creatorcontrib><creatorcontrib>Yi, Shihe</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta astronautica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yunfei</au><au>Liu, Wei</au><au>Xu, Dan</au><au>Gang, Dundian</au><au>Yi, Shihe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A combined experimental and numerical investigation of roughness induced supersonic boundary layer transition</atitle><jtitle>Acta astronautica</jtitle><date>2016-01</date><risdate>2016</risdate><volume>118</volume><spage>199</spage><epage>209</epage><pages>199-209</pages><issn>0094-5765</issn><eissn>1879-2030</eissn><abstract>The effect of surface roughness on boundary layer transition is of great importance to hypersonic vehicles. In this paper, both experimental and numerical methods are used to investigate the laminar-turbulent transition of a Mach 3 flat-plate boundary layer induced by isolated roughness element. Good agreements are achieved between experimental data and high-order numerical simulations. It is observed that, with increasing height of roughness, the transition tends to move forward. Two different types of transition mechanisms are found according to the height of the roughness elements. For the smallest roughness height of h=1mm, the shear layer instability in the wake region appears to be the leading mechanism for transition to turbulence. For two larger roughness elements of h=2mm and h=4mm, strong unsteadiness is developed from the upstream separation zone and transition is immediately accomplished, which indicates that the absolute instability in upstream separation zone dominates the transition. •Roughness induced transition is studied using experimental and numerical methods.•Good agreements are achieved between experimental results and numerical results.•With increasing height of roughness, the transition tends to move forward.•Two different types of transition mechanisms are found in this study.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.actaastro.2015.10.008</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-5765
ispartof Acta astronautica, 2016-01, Vol.118, p.199-209
issn 0094-5765
1879-2030
language eng
recordid cdi_proquest_miscellaneous_1786155052
source ScienceDirect Journals (5 years ago - present)
subjects Boundary layer transition
Experiment
Hypersonic vehicles
Instability
Mathematical models
Numerical simulation
Roughness
Separation
Shear layers
Stability
Supersonic
Surface roughness
Upstream
title A combined experimental and numerical investigation of roughness induced supersonic boundary layer transition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T02%3A06%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20combined%20experimental%20and%20numerical%20investigation%20of%20roughness%20induced%20supersonic%20boundary%20layer%20transition&rft.jtitle=Acta%20astronautica&rft.au=Zhao,%20Yunfei&rft.date=2016-01&rft.volume=118&rft.spage=199&rft.epage=209&rft.pages=199-209&rft.issn=0094-5765&rft.eissn=1879-2030&rft_id=info:doi/10.1016/j.actaastro.2015.10.008&rft_dat=%3Cproquest_cross%3E1785238532%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1785238532&rft_id=info:pmid/&rft_els_id=S0094576515003793&rfr_iscdi=true