A review of real-time optimization in underground mining production

Real-time monitoring makes it possible to detect any disturbance occurring in production, while decision instruments can efficiently assist decision-makers to optimize production, reduce iterative workload, obtain better solutions, and preview possible results. Technologies for the above already exi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Southern African Institute of Mining and Metallurgy 2013-12, Vol.113 (12), p.889-897
Hauptverfasser: Song, Z, Rinne, M, van Wageningen, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Real-time monitoring makes it possible to detect any disturbance occurring in production, while decision instruments can efficiently assist decision-makers to optimize production, reduce iterative workload, obtain better solutions, and preview possible results. Technologies for the above already exist and have been proven in the process industry, i.e. refining and smelting. Optimization is also essential for profitable and stable mining production. Real-time monitoring has already taken hold in mining operations, especially in surface mining, while optimization techniques have also been widely used in underground mining, particularly for planning and scheduling. This review is limited to the hard-rock mining production of metallic ores such as gold and copper. It reviews optimization techniques developed for mine planning and scheduling, and communication technologies suitable for underground applications. It also presents control features for individual operation units, and discusses the technical viability of a mining production real-time optimization (MPRTO) system for underground mines, with possible benefits and challenges. Operational disturbances always occur in mine production. An MPRTO system can be useful to maintain operational effectiveness and efficiency by allowing quick changes to short-term plans. This paper briefly describes the MPRTO system, including the input, output, and basic algorithms. The technical prerequisites for the system specified here are already available. Further studies that are required to improve the system are discussed.
ISSN:2225-6253