Role of Interleukin-1 Signaling in a Mouse Model of Kawasaki Disease–Associated Abdominal Aortic Aneurysm

OBJECTIVE—Kawasaki disease (KD) is the most common cause of acquired cardiac disease in US children. In addition to coronary artery abnormalities and aneurysms, it can be associated with systemic arterial aneurysms. We evaluated the development of systemic arterial dilatation and aneurysms, includin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arteriosclerosis, thrombosis, and vascular biology thrombosis, and vascular biology, 2016-05, Vol.36 (5), p.886-897
Hauptverfasser: Wakita, Daiko, Kurashima, Yosuke, Crother, Timothy R, Noval Rivas, Magali, Lee, Youngho, Chen, Shuang, Fury, Wen, Bai, Yu, Wagner, Shawn, Li, Debiao, Lehman, Thomas, Fishbein, Michael C, Hoffman, Hal M, Shah, Prediman K, Shimada, Kenichi, Arditi, Moshe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 897
container_issue 5
container_start_page 886
container_title Arteriosclerosis, thrombosis, and vascular biology
container_volume 36
creator Wakita, Daiko
Kurashima, Yosuke
Crother, Timothy R
Noval Rivas, Magali
Lee, Youngho
Chen, Shuang
Fury, Wen
Bai, Yu
Wagner, Shawn
Li, Debiao
Lehman, Thomas
Fishbein, Michael C
Hoffman, Hal M
Shah, Prediman K
Shimada, Kenichi
Arditi, Moshe
description OBJECTIVE—Kawasaki disease (KD) is the most common cause of acquired cardiac disease in US children. In addition to coronary artery abnormalities and aneurysms, it can be associated with systemic arterial aneurysms. We evaluated the development of systemic arterial dilatation and aneurysms, including abdominal aortic aneurysm (AAA) in the Lactobacillus casei cell-wall extract (LCWE)–induced KD vasculitis mouse model. METHODS AND RESULTS—We discovered that in addition to aortitis, coronary arteritis and myocarditis, the LCWE-induced KD mouse model is also associated with abdominal aorta dilatation and AAA, as well as renal and iliac artery aneurysms. AAA induced in KD mice was exclusively infrarenal, both fusiform and saccular, with intimal proliferation, myofibroblastic proliferation, break in the elastin layer, vascular smooth muscle cell loss, and inflammatory cell accumulation in the media and adventitia. Il1r, Il1a, and Il1b mice were protected from KD associated AAA. Infiltrating CD11c macrophages produced active caspase-1, and caspase-1 or NLRP3 deficiency inhibited AAA formation. Treatment with interleukin (IL)-1R antagonist (Anakinra), anti–IL-1α, or anti–IL-1β mAb blocked LCWE-induced AAA formation. CONCLUSIONS—Similar to clinical KD, the LCWE-induced KD vasculitis mouse model can also be accompanied by AAA formation. Both IL-1α and IL-1β play a key role, and use of an IL-1R blocking agent that inhibits both pathways may be a promising therapeutic target not only for KD coronary arteritis, but also for the other systemic arterial aneurysms including AAA that maybe seen in severe cases of KD. The LCWE-induced vasculitis model may also represent an alternative model for AAA disease.
doi_str_mv 10.1161/ATVBAHA.115.307072
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1785730842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1785730842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5092-aa1a3ff40cfaae7f37095bfb7c61b2f18e558e89e0ab12f389345af4418a35773</originalsourceid><addsrcrecordid>eNp9kMtO3TAQhq2qqFzaF-ii8pJNwNc4WabcVRBSS7uNJjljcI8Tg53oiB3vwBvyJBidU5bdjGek7_8lf4R85eyA85IfNjd_vjfnTT70gWSGGfGB7HAtVKFKWX7MOzN1oUsltsluSn8ZY0oI9olsi7JWnHG9Q5Y_g0caLL0YJ4we56UbC05_udsRvBtvqRsp0KswJ8xzgf6N_QErSLB09NglhIQvT89NSqF3MOGCNt0iDC7HaRPi5HrajDjHxzR8JlsWfMIvm3eP_D49uTk6Ly6vzy6Omsui16wWBQAHaa1ivQVAY6Vhte5sZ_qSd8LyCrWusKqRQceFlVUtlQarFK9AamPkHtlf997H8DBjmtrBpR69hxHzR1puKm0kq5TIqFijfQwpRbTtfXQDxMeWs_ZNcruRnA_driXn0LdN_9wNuHiP_LOagXINrILPVtPSzyuM7R2Cn-7-1_wKdjiKPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1785730842</pqid></control><display><type>article</type><title>Role of Interleukin-1 Signaling in a Mouse Model of Kawasaki Disease–Associated Abdominal Aortic Aneurysm</title><source>Journals@Ovid Complete - AutoHoldings</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Wakita, Daiko ; Kurashima, Yosuke ; Crother, Timothy R ; Noval Rivas, Magali ; Lee, Youngho ; Chen, Shuang ; Fury, Wen ; Bai, Yu ; Wagner, Shawn ; Li, Debiao ; Lehman, Thomas ; Fishbein, Michael C ; Hoffman, Hal M ; Shah, Prediman K ; Shimada, Kenichi ; Arditi, Moshe</creator><creatorcontrib>Wakita, Daiko ; Kurashima, Yosuke ; Crother, Timothy R ; Noval Rivas, Magali ; Lee, Youngho ; Chen, Shuang ; Fury, Wen ; Bai, Yu ; Wagner, Shawn ; Li, Debiao ; Lehman, Thomas ; Fishbein, Michael C ; Hoffman, Hal M ; Shah, Prediman K ; Shimada, Kenichi ; Arditi, Moshe</creatorcontrib><description>OBJECTIVE—Kawasaki disease (KD) is the most common cause of acquired cardiac disease in US children. In addition to coronary artery abnormalities and aneurysms, it can be associated with systemic arterial aneurysms. We evaluated the development of systemic arterial dilatation and aneurysms, including abdominal aortic aneurysm (AAA) in the Lactobacillus casei cell-wall extract (LCWE)–induced KD vasculitis mouse model. METHODS AND RESULTS—We discovered that in addition to aortitis, coronary arteritis and myocarditis, the LCWE-induced KD mouse model is also associated with abdominal aorta dilatation and AAA, as well as renal and iliac artery aneurysms. AAA induced in KD mice was exclusively infrarenal, both fusiform and saccular, with intimal proliferation, myofibroblastic proliferation, break in the elastin layer, vascular smooth muscle cell loss, and inflammatory cell accumulation in the media and adventitia. Il1r, Il1a, and Il1b mice were protected from KD associated AAA. Infiltrating CD11c macrophages produced active caspase-1, and caspase-1 or NLRP3 deficiency inhibited AAA formation. Treatment with interleukin (IL)-1R antagonist (Anakinra), anti–IL-1α, or anti–IL-1β mAb blocked LCWE-induced AAA formation. CONCLUSIONS—Similar to clinical KD, the LCWE-induced KD vasculitis mouse model can also be accompanied by AAA formation. Both IL-1α and IL-1β play a key role, and use of an IL-1R blocking agent that inhibits both pathways may be a promising therapeutic target not only for KD coronary arteritis, but also for the other systemic arterial aneurysms including AAA that maybe seen in severe cases of KD. The LCWE-induced vasculitis model may also represent an alternative model for AAA disease.</description><identifier>ISSN: 1079-5642</identifier><identifier>EISSN: 1524-4636</identifier><identifier>DOI: 10.1161/ATVBAHA.115.307072</identifier><identifier>PMID: 26941015</identifier><language>eng</language><publisher>United States: American Heart Association, Inc</publisher><subject>Animals ; Aorta, Abdominal - drug effects ; Aorta, Abdominal - metabolism ; Aorta, Abdominal - pathology ; Aortic Aneurysm, Abdominal - genetics ; Aortic Aneurysm, Abdominal - metabolism ; Aortic Aneurysm, Abdominal - pathology ; Aortic Aneurysm, Abdominal - prevention &amp; control ; Aortitis - genetics ; Aortitis - metabolism ; Aortitis - pathology ; Caspase 1 - deficiency ; Caspase 1 - genetics ; Cell Proliferation ; Cell Wall ; Dilatation, Pathologic ; Disease Models, Animal ; Elastin - metabolism ; Female ; Gene Expression Profiling ; Genotype ; Humans ; Interleukin 1 Receptor Antagonist Protein - pharmacology ; Interleukin-1alpha - deficiency ; Interleukin-1alpha - genetics ; Interleukin-1alpha - metabolism ; Interleukin-1beta - deficiency ; Interleukin-1beta - genetics ; Interleukin-1beta - metabolism ; Lactobacillus casei ; Macrophages - metabolism ; Macrophages - pathology ; Male ; Mice, Inbred C57BL ; Mice, Knockout ; Mucocutaneous Lymph Node Syndrome - chemically induced ; Mucocutaneous Lymph Node Syndrome - complications ; Mucocutaneous Lymph Node Syndrome - drug therapy ; Muscle, Smooth, Vascular - metabolism ; Muscle, Smooth, Vascular - pathology ; Myocytes, Smooth Muscle - metabolism ; Myocytes, Smooth Muscle - pathology ; NLR Family, Pyrin Domain-Containing 3 Protein - deficiency ; NLR Family, Pyrin Domain-Containing 3 Protein - genetics ; Phenotype ; Receptors, Interleukin-1 Type I - deficiency ; Receptors, Interleukin-1 Type I - genetics ; Receptors, Interleukin-1 Type I - metabolism ; Signal Transduction - drug effects ; Time Factors</subject><ispartof>Arteriosclerosis, thrombosis, and vascular biology, 2016-05, Vol.36 (5), p.886-897</ispartof><rights>2016 American Heart Association, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5092-aa1a3ff40cfaae7f37095bfb7c61b2f18e558e89e0ab12f389345af4418a35773</citedby><cites>FETCH-LOGICAL-c5092-aa1a3ff40cfaae7f37095bfb7c61b2f18e558e89e0ab12f389345af4418a35773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26941015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wakita, Daiko</creatorcontrib><creatorcontrib>Kurashima, Yosuke</creatorcontrib><creatorcontrib>Crother, Timothy R</creatorcontrib><creatorcontrib>Noval Rivas, Magali</creatorcontrib><creatorcontrib>Lee, Youngho</creatorcontrib><creatorcontrib>Chen, Shuang</creatorcontrib><creatorcontrib>Fury, Wen</creatorcontrib><creatorcontrib>Bai, Yu</creatorcontrib><creatorcontrib>Wagner, Shawn</creatorcontrib><creatorcontrib>Li, Debiao</creatorcontrib><creatorcontrib>Lehman, Thomas</creatorcontrib><creatorcontrib>Fishbein, Michael C</creatorcontrib><creatorcontrib>Hoffman, Hal M</creatorcontrib><creatorcontrib>Shah, Prediman K</creatorcontrib><creatorcontrib>Shimada, Kenichi</creatorcontrib><creatorcontrib>Arditi, Moshe</creatorcontrib><title>Role of Interleukin-1 Signaling in a Mouse Model of Kawasaki Disease–Associated Abdominal Aortic Aneurysm</title><title>Arteriosclerosis, thrombosis, and vascular biology</title><addtitle>Arterioscler Thromb Vasc Biol</addtitle><description>OBJECTIVE—Kawasaki disease (KD) is the most common cause of acquired cardiac disease in US children. In addition to coronary artery abnormalities and aneurysms, it can be associated with systemic arterial aneurysms. We evaluated the development of systemic arterial dilatation and aneurysms, including abdominal aortic aneurysm (AAA) in the Lactobacillus casei cell-wall extract (LCWE)–induced KD vasculitis mouse model. METHODS AND RESULTS—We discovered that in addition to aortitis, coronary arteritis and myocarditis, the LCWE-induced KD mouse model is also associated with abdominal aorta dilatation and AAA, as well as renal and iliac artery aneurysms. AAA induced in KD mice was exclusively infrarenal, both fusiform and saccular, with intimal proliferation, myofibroblastic proliferation, break in the elastin layer, vascular smooth muscle cell loss, and inflammatory cell accumulation in the media and adventitia. Il1r, Il1a, and Il1b mice were protected from KD associated AAA. Infiltrating CD11c macrophages produced active caspase-1, and caspase-1 or NLRP3 deficiency inhibited AAA formation. Treatment with interleukin (IL)-1R antagonist (Anakinra), anti–IL-1α, or anti–IL-1β mAb blocked LCWE-induced AAA formation. CONCLUSIONS—Similar to clinical KD, the LCWE-induced KD vasculitis mouse model can also be accompanied by AAA formation. Both IL-1α and IL-1β play a key role, and use of an IL-1R blocking agent that inhibits both pathways may be a promising therapeutic target not only for KD coronary arteritis, but also for the other systemic arterial aneurysms including AAA that maybe seen in severe cases of KD. The LCWE-induced vasculitis model may also represent an alternative model for AAA disease.</description><subject>Animals</subject><subject>Aorta, Abdominal - drug effects</subject><subject>Aorta, Abdominal - metabolism</subject><subject>Aorta, Abdominal - pathology</subject><subject>Aortic Aneurysm, Abdominal - genetics</subject><subject>Aortic Aneurysm, Abdominal - metabolism</subject><subject>Aortic Aneurysm, Abdominal - pathology</subject><subject>Aortic Aneurysm, Abdominal - prevention &amp; control</subject><subject>Aortitis - genetics</subject><subject>Aortitis - metabolism</subject><subject>Aortitis - pathology</subject><subject>Caspase 1 - deficiency</subject><subject>Caspase 1 - genetics</subject><subject>Cell Proliferation</subject><subject>Cell Wall</subject><subject>Dilatation, Pathologic</subject><subject>Disease Models, Animal</subject><subject>Elastin - metabolism</subject><subject>Female</subject><subject>Gene Expression Profiling</subject><subject>Genotype</subject><subject>Humans</subject><subject>Interleukin 1 Receptor Antagonist Protein - pharmacology</subject><subject>Interleukin-1alpha - deficiency</subject><subject>Interleukin-1alpha - genetics</subject><subject>Interleukin-1alpha - metabolism</subject><subject>Interleukin-1beta - deficiency</subject><subject>Interleukin-1beta - genetics</subject><subject>Interleukin-1beta - metabolism</subject><subject>Lactobacillus casei</subject><subject>Macrophages - metabolism</subject><subject>Macrophages - pathology</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mucocutaneous Lymph Node Syndrome - chemically induced</subject><subject>Mucocutaneous Lymph Node Syndrome - complications</subject><subject>Mucocutaneous Lymph Node Syndrome - drug therapy</subject><subject>Muscle, Smooth, Vascular - metabolism</subject><subject>Muscle, Smooth, Vascular - pathology</subject><subject>Myocytes, Smooth Muscle - metabolism</subject><subject>Myocytes, Smooth Muscle - pathology</subject><subject>NLR Family, Pyrin Domain-Containing 3 Protein - deficiency</subject><subject>NLR Family, Pyrin Domain-Containing 3 Protein - genetics</subject><subject>Phenotype</subject><subject>Receptors, Interleukin-1 Type I - deficiency</subject><subject>Receptors, Interleukin-1 Type I - genetics</subject><subject>Receptors, Interleukin-1 Type I - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Time Factors</subject><issn>1079-5642</issn><issn>1524-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtO3TAQhq2qqFzaF-ii8pJNwNc4WabcVRBSS7uNJjljcI8Tg53oiB3vwBvyJBidU5bdjGek7_8lf4R85eyA85IfNjd_vjfnTT70gWSGGfGB7HAtVKFKWX7MOzN1oUsltsluSn8ZY0oI9olsi7JWnHG9Q5Y_g0caLL0YJ4we56UbC05_udsRvBtvqRsp0KswJ8xzgf6N_QErSLB09NglhIQvT89NSqF3MOGCNt0iDC7HaRPi5HrajDjHxzR8JlsWfMIvm3eP_D49uTk6Ly6vzy6Omsui16wWBQAHaa1ivQVAY6Vhte5sZ_qSd8LyCrWusKqRQceFlVUtlQarFK9AamPkHtlf997H8DBjmtrBpR69hxHzR1puKm0kq5TIqFijfQwpRbTtfXQDxMeWs_ZNcruRnA_driXn0LdN_9wNuHiP_LOagXINrILPVtPSzyuM7R2Cn-7-1_wKdjiKPw</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Wakita, Daiko</creator><creator>Kurashima, Yosuke</creator><creator>Crother, Timothy R</creator><creator>Noval Rivas, Magali</creator><creator>Lee, Youngho</creator><creator>Chen, Shuang</creator><creator>Fury, Wen</creator><creator>Bai, Yu</creator><creator>Wagner, Shawn</creator><creator>Li, Debiao</creator><creator>Lehman, Thomas</creator><creator>Fishbein, Michael C</creator><creator>Hoffman, Hal M</creator><creator>Shah, Prediman K</creator><creator>Shimada, Kenichi</creator><creator>Arditi, Moshe</creator><general>American Heart Association, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201605</creationdate><title>Role of Interleukin-1 Signaling in a Mouse Model of Kawasaki Disease–Associated Abdominal Aortic Aneurysm</title><author>Wakita, Daiko ; Kurashima, Yosuke ; Crother, Timothy R ; Noval Rivas, Magali ; Lee, Youngho ; Chen, Shuang ; Fury, Wen ; Bai, Yu ; Wagner, Shawn ; Li, Debiao ; Lehman, Thomas ; Fishbein, Michael C ; Hoffman, Hal M ; Shah, Prediman K ; Shimada, Kenichi ; Arditi, Moshe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5092-aa1a3ff40cfaae7f37095bfb7c61b2f18e558e89e0ab12f389345af4418a35773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Aorta, Abdominal - drug effects</topic><topic>Aorta, Abdominal - metabolism</topic><topic>Aorta, Abdominal - pathology</topic><topic>Aortic Aneurysm, Abdominal - genetics</topic><topic>Aortic Aneurysm, Abdominal - metabolism</topic><topic>Aortic Aneurysm, Abdominal - pathology</topic><topic>Aortic Aneurysm, Abdominal - prevention &amp; control</topic><topic>Aortitis - genetics</topic><topic>Aortitis - metabolism</topic><topic>Aortitis - pathology</topic><topic>Caspase 1 - deficiency</topic><topic>Caspase 1 - genetics</topic><topic>Cell Proliferation</topic><topic>Cell Wall</topic><topic>Dilatation, Pathologic</topic><topic>Disease Models, Animal</topic><topic>Elastin - metabolism</topic><topic>Female</topic><topic>Gene Expression Profiling</topic><topic>Genotype</topic><topic>Humans</topic><topic>Interleukin 1 Receptor Antagonist Protein - pharmacology</topic><topic>Interleukin-1alpha - deficiency</topic><topic>Interleukin-1alpha - genetics</topic><topic>Interleukin-1alpha - metabolism</topic><topic>Interleukin-1beta - deficiency</topic><topic>Interleukin-1beta - genetics</topic><topic>Interleukin-1beta - metabolism</topic><topic>Lactobacillus casei</topic><topic>Macrophages - metabolism</topic><topic>Macrophages - pathology</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mucocutaneous Lymph Node Syndrome - chemically induced</topic><topic>Mucocutaneous Lymph Node Syndrome - complications</topic><topic>Mucocutaneous Lymph Node Syndrome - drug therapy</topic><topic>Muscle, Smooth, Vascular - metabolism</topic><topic>Muscle, Smooth, Vascular - pathology</topic><topic>Myocytes, Smooth Muscle - metabolism</topic><topic>Myocytes, Smooth Muscle - pathology</topic><topic>NLR Family, Pyrin Domain-Containing 3 Protein - deficiency</topic><topic>NLR Family, Pyrin Domain-Containing 3 Protein - genetics</topic><topic>Phenotype</topic><topic>Receptors, Interleukin-1 Type I - deficiency</topic><topic>Receptors, Interleukin-1 Type I - genetics</topic><topic>Receptors, Interleukin-1 Type I - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wakita, Daiko</creatorcontrib><creatorcontrib>Kurashima, Yosuke</creatorcontrib><creatorcontrib>Crother, Timothy R</creatorcontrib><creatorcontrib>Noval Rivas, Magali</creatorcontrib><creatorcontrib>Lee, Youngho</creatorcontrib><creatorcontrib>Chen, Shuang</creatorcontrib><creatorcontrib>Fury, Wen</creatorcontrib><creatorcontrib>Bai, Yu</creatorcontrib><creatorcontrib>Wagner, Shawn</creatorcontrib><creatorcontrib>Li, Debiao</creatorcontrib><creatorcontrib>Lehman, Thomas</creatorcontrib><creatorcontrib>Fishbein, Michael C</creatorcontrib><creatorcontrib>Hoffman, Hal M</creatorcontrib><creatorcontrib>Shah, Prediman K</creatorcontrib><creatorcontrib>Shimada, Kenichi</creatorcontrib><creatorcontrib>Arditi, Moshe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wakita, Daiko</au><au>Kurashima, Yosuke</au><au>Crother, Timothy R</au><au>Noval Rivas, Magali</au><au>Lee, Youngho</au><au>Chen, Shuang</au><au>Fury, Wen</au><au>Bai, Yu</au><au>Wagner, Shawn</au><au>Li, Debiao</au><au>Lehman, Thomas</au><au>Fishbein, Michael C</au><au>Hoffman, Hal M</au><au>Shah, Prediman K</au><au>Shimada, Kenichi</au><au>Arditi, Moshe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Interleukin-1 Signaling in a Mouse Model of Kawasaki Disease–Associated Abdominal Aortic Aneurysm</atitle><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle><addtitle>Arterioscler Thromb Vasc Biol</addtitle><date>2016-05</date><risdate>2016</risdate><volume>36</volume><issue>5</issue><spage>886</spage><epage>897</epage><pages>886-897</pages><issn>1079-5642</issn><eissn>1524-4636</eissn><abstract>OBJECTIVE—Kawasaki disease (KD) is the most common cause of acquired cardiac disease in US children. In addition to coronary artery abnormalities and aneurysms, it can be associated with systemic arterial aneurysms. We evaluated the development of systemic arterial dilatation and aneurysms, including abdominal aortic aneurysm (AAA) in the Lactobacillus casei cell-wall extract (LCWE)–induced KD vasculitis mouse model. METHODS AND RESULTS—We discovered that in addition to aortitis, coronary arteritis and myocarditis, the LCWE-induced KD mouse model is also associated with abdominal aorta dilatation and AAA, as well as renal and iliac artery aneurysms. AAA induced in KD mice was exclusively infrarenal, both fusiform and saccular, with intimal proliferation, myofibroblastic proliferation, break in the elastin layer, vascular smooth muscle cell loss, and inflammatory cell accumulation in the media and adventitia. Il1r, Il1a, and Il1b mice were protected from KD associated AAA. Infiltrating CD11c macrophages produced active caspase-1, and caspase-1 or NLRP3 deficiency inhibited AAA formation. Treatment with interleukin (IL)-1R antagonist (Anakinra), anti–IL-1α, or anti–IL-1β mAb blocked LCWE-induced AAA formation. CONCLUSIONS—Similar to clinical KD, the LCWE-induced KD vasculitis mouse model can also be accompanied by AAA formation. Both IL-1α and IL-1β play a key role, and use of an IL-1R blocking agent that inhibits both pathways may be a promising therapeutic target not only for KD coronary arteritis, but also for the other systemic arterial aneurysms including AAA that maybe seen in severe cases of KD. The LCWE-induced vasculitis model may also represent an alternative model for AAA disease.</abstract><cop>United States</cop><pub>American Heart Association, Inc</pub><pmid>26941015</pmid><doi>10.1161/ATVBAHA.115.307072</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1079-5642
ispartof Arteriosclerosis, thrombosis, and vascular biology, 2016-05, Vol.36 (5), p.886-897
issn 1079-5642
1524-4636
language eng
recordid cdi_proquest_miscellaneous_1785730842
source Journals@Ovid Complete - AutoHoldings; MEDLINE; Alma/SFX Local Collection
subjects Animals
Aorta, Abdominal - drug effects
Aorta, Abdominal - metabolism
Aorta, Abdominal - pathology
Aortic Aneurysm, Abdominal - genetics
Aortic Aneurysm, Abdominal - metabolism
Aortic Aneurysm, Abdominal - pathology
Aortic Aneurysm, Abdominal - prevention & control
Aortitis - genetics
Aortitis - metabolism
Aortitis - pathology
Caspase 1 - deficiency
Caspase 1 - genetics
Cell Proliferation
Cell Wall
Dilatation, Pathologic
Disease Models, Animal
Elastin - metabolism
Female
Gene Expression Profiling
Genotype
Humans
Interleukin 1 Receptor Antagonist Protein - pharmacology
Interleukin-1alpha - deficiency
Interleukin-1alpha - genetics
Interleukin-1alpha - metabolism
Interleukin-1beta - deficiency
Interleukin-1beta - genetics
Interleukin-1beta - metabolism
Lactobacillus casei
Macrophages - metabolism
Macrophages - pathology
Male
Mice, Inbred C57BL
Mice, Knockout
Mucocutaneous Lymph Node Syndrome - chemically induced
Mucocutaneous Lymph Node Syndrome - complications
Mucocutaneous Lymph Node Syndrome - drug therapy
Muscle, Smooth, Vascular - metabolism
Muscle, Smooth, Vascular - pathology
Myocytes, Smooth Muscle - metabolism
Myocytes, Smooth Muscle - pathology
NLR Family, Pyrin Domain-Containing 3 Protein - deficiency
NLR Family, Pyrin Domain-Containing 3 Protein - genetics
Phenotype
Receptors, Interleukin-1 Type I - deficiency
Receptors, Interleukin-1 Type I - genetics
Receptors, Interleukin-1 Type I - metabolism
Signal Transduction - drug effects
Time Factors
title Role of Interleukin-1 Signaling in a Mouse Model of Kawasaki Disease–Associated Abdominal Aortic Aneurysm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A26%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Interleukin-1%20Signaling%20in%20a%20Mouse%20Model%20of%20Kawasaki%20Disease%E2%80%93Associated%20Abdominal%20Aortic%20Aneurysm&rft.jtitle=Arteriosclerosis,%20thrombosis,%20and%20vascular%20biology&rft.au=Wakita,%20Daiko&rft.date=2016-05&rft.volume=36&rft.issue=5&rft.spage=886&rft.epage=897&rft.pages=886-897&rft.issn=1079-5642&rft.eissn=1524-4636&rft_id=info:doi/10.1161/ATVBAHA.115.307072&rft_dat=%3Cproquest_cross%3E1785730842%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1785730842&rft_id=info:pmid/26941015&rfr_iscdi=true