Role of Interleukin-1 Signaling in a Mouse Model of Kawasaki Disease–Associated Abdominal Aortic Aneurysm
OBJECTIVE—Kawasaki disease (KD) is the most common cause of acquired cardiac disease in US children. In addition to coronary artery abnormalities and aneurysms, it can be associated with systemic arterial aneurysms. We evaluated the development of systemic arterial dilatation and aneurysms, includin...
Gespeichert in:
Veröffentlicht in: | Arteriosclerosis, thrombosis, and vascular biology thrombosis, and vascular biology, 2016-05, Vol.36 (5), p.886-897 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 897 |
---|---|
container_issue | 5 |
container_start_page | 886 |
container_title | Arteriosclerosis, thrombosis, and vascular biology |
container_volume | 36 |
creator | Wakita, Daiko Kurashima, Yosuke Crother, Timothy R Noval Rivas, Magali Lee, Youngho Chen, Shuang Fury, Wen Bai, Yu Wagner, Shawn Li, Debiao Lehman, Thomas Fishbein, Michael C Hoffman, Hal M Shah, Prediman K Shimada, Kenichi Arditi, Moshe |
description | OBJECTIVE—Kawasaki disease (KD) is the most common cause of acquired cardiac disease in US children. In addition to coronary artery abnormalities and aneurysms, it can be associated with systemic arterial aneurysms. We evaluated the development of systemic arterial dilatation and aneurysms, including abdominal aortic aneurysm (AAA) in the Lactobacillus casei cell-wall extract (LCWE)–induced KD vasculitis mouse model.
METHODS AND RESULTS—We discovered that in addition to aortitis, coronary arteritis and myocarditis, the LCWE-induced KD mouse model is also associated with abdominal aorta dilatation and AAA, as well as renal and iliac artery aneurysms. AAA induced in KD mice was exclusively infrarenal, both fusiform and saccular, with intimal proliferation, myofibroblastic proliferation, break in the elastin layer, vascular smooth muscle cell loss, and inflammatory cell accumulation in the media and adventitia. Il1r, Il1a, and Il1b mice were protected from KD associated AAA. Infiltrating CD11c macrophages produced active caspase-1, and caspase-1 or NLRP3 deficiency inhibited AAA formation. Treatment with interleukin (IL)-1R antagonist (Anakinra), anti–IL-1α, or anti–IL-1β mAb blocked LCWE-induced AAA formation.
CONCLUSIONS—Similar to clinical KD, the LCWE-induced KD vasculitis mouse model can also be accompanied by AAA formation. Both IL-1α and IL-1β play a key role, and use of an IL-1R blocking agent that inhibits both pathways may be a promising therapeutic target not only for KD coronary arteritis, but also for the other systemic arterial aneurysms including AAA that maybe seen in severe cases of KD. The LCWE-induced vasculitis model may also represent an alternative model for AAA disease. |
doi_str_mv | 10.1161/ATVBAHA.115.307072 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1785730842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1785730842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5092-aa1a3ff40cfaae7f37095bfb7c61b2f18e558e89e0ab12f389345af4418a35773</originalsourceid><addsrcrecordid>eNp9kMtO3TAQhq2qqFzaF-ii8pJNwNc4WabcVRBSS7uNJjljcI8Tg53oiB3vwBvyJBidU5bdjGek7_8lf4R85eyA85IfNjd_vjfnTT70gWSGGfGB7HAtVKFKWX7MOzN1oUsltsluSn8ZY0oI9olsi7JWnHG9Q5Y_g0caLL0YJ4we56UbC05_udsRvBtvqRsp0KswJ8xzgf6N_QErSLB09NglhIQvT89NSqF3MOGCNt0iDC7HaRPi5HrajDjHxzR8JlsWfMIvm3eP_D49uTk6Ly6vzy6Omsui16wWBQAHaa1ivQVAY6Vhte5sZ_qSd8LyCrWusKqRQceFlVUtlQarFK9AamPkHtlf997H8DBjmtrBpR69hxHzR1puKm0kq5TIqFijfQwpRbTtfXQDxMeWs_ZNcruRnA_driXn0LdN_9wNuHiP_LOagXINrILPVtPSzyuM7R2Cn-7-1_wKdjiKPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1785730842</pqid></control><display><type>article</type><title>Role of Interleukin-1 Signaling in a Mouse Model of Kawasaki Disease–Associated Abdominal Aortic Aneurysm</title><source>Journals@Ovid Complete - AutoHoldings</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Wakita, Daiko ; Kurashima, Yosuke ; Crother, Timothy R ; Noval Rivas, Magali ; Lee, Youngho ; Chen, Shuang ; Fury, Wen ; Bai, Yu ; Wagner, Shawn ; Li, Debiao ; Lehman, Thomas ; Fishbein, Michael C ; Hoffman, Hal M ; Shah, Prediman K ; Shimada, Kenichi ; Arditi, Moshe</creator><creatorcontrib>Wakita, Daiko ; Kurashima, Yosuke ; Crother, Timothy R ; Noval Rivas, Magali ; Lee, Youngho ; Chen, Shuang ; Fury, Wen ; Bai, Yu ; Wagner, Shawn ; Li, Debiao ; Lehman, Thomas ; Fishbein, Michael C ; Hoffman, Hal M ; Shah, Prediman K ; Shimada, Kenichi ; Arditi, Moshe</creatorcontrib><description>OBJECTIVE—Kawasaki disease (KD) is the most common cause of acquired cardiac disease in US children. In addition to coronary artery abnormalities and aneurysms, it can be associated with systemic arterial aneurysms. We evaluated the development of systemic arterial dilatation and aneurysms, including abdominal aortic aneurysm (AAA) in the Lactobacillus casei cell-wall extract (LCWE)–induced KD vasculitis mouse model.
METHODS AND RESULTS—We discovered that in addition to aortitis, coronary arteritis and myocarditis, the LCWE-induced KD mouse model is also associated with abdominal aorta dilatation and AAA, as well as renal and iliac artery aneurysms. AAA induced in KD mice was exclusively infrarenal, both fusiform and saccular, with intimal proliferation, myofibroblastic proliferation, break in the elastin layer, vascular smooth muscle cell loss, and inflammatory cell accumulation in the media and adventitia. Il1r, Il1a, and Il1b mice were protected from KD associated AAA. Infiltrating CD11c macrophages produced active caspase-1, and caspase-1 or NLRP3 deficiency inhibited AAA formation. Treatment with interleukin (IL)-1R antagonist (Anakinra), anti–IL-1α, or anti–IL-1β mAb blocked LCWE-induced AAA formation.
CONCLUSIONS—Similar to clinical KD, the LCWE-induced KD vasculitis mouse model can also be accompanied by AAA formation. Both IL-1α and IL-1β play a key role, and use of an IL-1R blocking agent that inhibits both pathways may be a promising therapeutic target not only for KD coronary arteritis, but also for the other systemic arterial aneurysms including AAA that maybe seen in severe cases of KD. The LCWE-induced vasculitis model may also represent an alternative model for AAA disease.</description><identifier>ISSN: 1079-5642</identifier><identifier>EISSN: 1524-4636</identifier><identifier>DOI: 10.1161/ATVBAHA.115.307072</identifier><identifier>PMID: 26941015</identifier><language>eng</language><publisher>United States: American Heart Association, Inc</publisher><subject>Animals ; Aorta, Abdominal - drug effects ; Aorta, Abdominal - metabolism ; Aorta, Abdominal - pathology ; Aortic Aneurysm, Abdominal - genetics ; Aortic Aneurysm, Abdominal - metabolism ; Aortic Aneurysm, Abdominal - pathology ; Aortic Aneurysm, Abdominal - prevention & control ; Aortitis - genetics ; Aortitis - metabolism ; Aortitis - pathology ; Caspase 1 - deficiency ; Caspase 1 - genetics ; Cell Proliferation ; Cell Wall ; Dilatation, Pathologic ; Disease Models, Animal ; Elastin - metabolism ; Female ; Gene Expression Profiling ; Genotype ; Humans ; Interleukin 1 Receptor Antagonist Protein - pharmacology ; Interleukin-1alpha - deficiency ; Interleukin-1alpha - genetics ; Interleukin-1alpha - metabolism ; Interleukin-1beta - deficiency ; Interleukin-1beta - genetics ; Interleukin-1beta - metabolism ; Lactobacillus casei ; Macrophages - metabolism ; Macrophages - pathology ; Male ; Mice, Inbred C57BL ; Mice, Knockout ; Mucocutaneous Lymph Node Syndrome - chemically induced ; Mucocutaneous Lymph Node Syndrome - complications ; Mucocutaneous Lymph Node Syndrome - drug therapy ; Muscle, Smooth, Vascular - metabolism ; Muscle, Smooth, Vascular - pathology ; Myocytes, Smooth Muscle - metabolism ; Myocytes, Smooth Muscle - pathology ; NLR Family, Pyrin Domain-Containing 3 Protein - deficiency ; NLR Family, Pyrin Domain-Containing 3 Protein - genetics ; Phenotype ; Receptors, Interleukin-1 Type I - deficiency ; Receptors, Interleukin-1 Type I - genetics ; Receptors, Interleukin-1 Type I - metabolism ; Signal Transduction - drug effects ; Time Factors</subject><ispartof>Arteriosclerosis, thrombosis, and vascular biology, 2016-05, Vol.36 (5), p.886-897</ispartof><rights>2016 American Heart Association, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5092-aa1a3ff40cfaae7f37095bfb7c61b2f18e558e89e0ab12f389345af4418a35773</citedby><cites>FETCH-LOGICAL-c5092-aa1a3ff40cfaae7f37095bfb7c61b2f18e558e89e0ab12f389345af4418a35773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26941015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wakita, Daiko</creatorcontrib><creatorcontrib>Kurashima, Yosuke</creatorcontrib><creatorcontrib>Crother, Timothy R</creatorcontrib><creatorcontrib>Noval Rivas, Magali</creatorcontrib><creatorcontrib>Lee, Youngho</creatorcontrib><creatorcontrib>Chen, Shuang</creatorcontrib><creatorcontrib>Fury, Wen</creatorcontrib><creatorcontrib>Bai, Yu</creatorcontrib><creatorcontrib>Wagner, Shawn</creatorcontrib><creatorcontrib>Li, Debiao</creatorcontrib><creatorcontrib>Lehman, Thomas</creatorcontrib><creatorcontrib>Fishbein, Michael C</creatorcontrib><creatorcontrib>Hoffman, Hal M</creatorcontrib><creatorcontrib>Shah, Prediman K</creatorcontrib><creatorcontrib>Shimada, Kenichi</creatorcontrib><creatorcontrib>Arditi, Moshe</creatorcontrib><title>Role of Interleukin-1 Signaling in a Mouse Model of Kawasaki Disease–Associated Abdominal Aortic Aneurysm</title><title>Arteriosclerosis, thrombosis, and vascular biology</title><addtitle>Arterioscler Thromb Vasc Biol</addtitle><description>OBJECTIVE—Kawasaki disease (KD) is the most common cause of acquired cardiac disease in US children. In addition to coronary artery abnormalities and aneurysms, it can be associated with systemic arterial aneurysms. We evaluated the development of systemic arterial dilatation and aneurysms, including abdominal aortic aneurysm (AAA) in the Lactobacillus casei cell-wall extract (LCWE)–induced KD vasculitis mouse model.
METHODS AND RESULTS—We discovered that in addition to aortitis, coronary arteritis and myocarditis, the LCWE-induced KD mouse model is also associated with abdominal aorta dilatation and AAA, as well as renal and iliac artery aneurysms. AAA induced in KD mice was exclusively infrarenal, both fusiform and saccular, with intimal proliferation, myofibroblastic proliferation, break in the elastin layer, vascular smooth muscle cell loss, and inflammatory cell accumulation in the media and adventitia. Il1r, Il1a, and Il1b mice were protected from KD associated AAA. Infiltrating CD11c macrophages produced active caspase-1, and caspase-1 or NLRP3 deficiency inhibited AAA formation. Treatment with interleukin (IL)-1R antagonist (Anakinra), anti–IL-1α, or anti–IL-1β mAb blocked LCWE-induced AAA formation.
CONCLUSIONS—Similar to clinical KD, the LCWE-induced KD vasculitis mouse model can also be accompanied by AAA formation. Both IL-1α and IL-1β play a key role, and use of an IL-1R blocking agent that inhibits both pathways may be a promising therapeutic target not only for KD coronary arteritis, but also for the other systemic arterial aneurysms including AAA that maybe seen in severe cases of KD. The LCWE-induced vasculitis model may also represent an alternative model for AAA disease.</description><subject>Animals</subject><subject>Aorta, Abdominal - drug effects</subject><subject>Aorta, Abdominal - metabolism</subject><subject>Aorta, Abdominal - pathology</subject><subject>Aortic Aneurysm, Abdominal - genetics</subject><subject>Aortic Aneurysm, Abdominal - metabolism</subject><subject>Aortic Aneurysm, Abdominal - pathology</subject><subject>Aortic Aneurysm, Abdominal - prevention & control</subject><subject>Aortitis - genetics</subject><subject>Aortitis - metabolism</subject><subject>Aortitis - pathology</subject><subject>Caspase 1 - deficiency</subject><subject>Caspase 1 - genetics</subject><subject>Cell Proliferation</subject><subject>Cell Wall</subject><subject>Dilatation, Pathologic</subject><subject>Disease Models, Animal</subject><subject>Elastin - metabolism</subject><subject>Female</subject><subject>Gene Expression Profiling</subject><subject>Genotype</subject><subject>Humans</subject><subject>Interleukin 1 Receptor Antagonist Protein - pharmacology</subject><subject>Interleukin-1alpha - deficiency</subject><subject>Interleukin-1alpha - genetics</subject><subject>Interleukin-1alpha - metabolism</subject><subject>Interleukin-1beta - deficiency</subject><subject>Interleukin-1beta - genetics</subject><subject>Interleukin-1beta - metabolism</subject><subject>Lactobacillus casei</subject><subject>Macrophages - metabolism</subject><subject>Macrophages - pathology</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mucocutaneous Lymph Node Syndrome - chemically induced</subject><subject>Mucocutaneous Lymph Node Syndrome - complications</subject><subject>Mucocutaneous Lymph Node Syndrome - drug therapy</subject><subject>Muscle, Smooth, Vascular - metabolism</subject><subject>Muscle, Smooth, Vascular - pathology</subject><subject>Myocytes, Smooth Muscle - metabolism</subject><subject>Myocytes, Smooth Muscle - pathology</subject><subject>NLR Family, Pyrin Domain-Containing 3 Protein - deficiency</subject><subject>NLR Family, Pyrin Domain-Containing 3 Protein - genetics</subject><subject>Phenotype</subject><subject>Receptors, Interleukin-1 Type I - deficiency</subject><subject>Receptors, Interleukin-1 Type I - genetics</subject><subject>Receptors, Interleukin-1 Type I - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Time Factors</subject><issn>1079-5642</issn><issn>1524-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtO3TAQhq2qqFzaF-ii8pJNwNc4WabcVRBSS7uNJjljcI8Tg53oiB3vwBvyJBidU5bdjGek7_8lf4R85eyA85IfNjd_vjfnTT70gWSGGfGB7HAtVKFKWX7MOzN1oUsltsluSn8ZY0oI9olsi7JWnHG9Q5Y_g0caLL0YJ4we56UbC05_udsRvBtvqRsp0KswJ8xzgf6N_QErSLB09NglhIQvT89NSqF3MOGCNt0iDC7HaRPi5HrajDjHxzR8JlsWfMIvm3eP_D49uTk6Ly6vzy6Omsui16wWBQAHaa1ivQVAY6Vhte5sZ_qSd8LyCrWusKqRQceFlVUtlQarFK9AamPkHtlf997H8DBjmtrBpR69hxHzR1puKm0kq5TIqFijfQwpRbTtfXQDxMeWs_ZNcruRnA_driXn0LdN_9wNuHiP_LOagXINrILPVtPSzyuM7R2Cn-7-1_wKdjiKPw</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Wakita, Daiko</creator><creator>Kurashima, Yosuke</creator><creator>Crother, Timothy R</creator><creator>Noval Rivas, Magali</creator><creator>Lee, Youngho</creator><creator>Chen, Shuang</creator><creator>Fury, Wen</creator><creator>Bai, Yu</creator><creator>Wagner, Shawn</creator><creator>Li, Debiao</creator><creator>Lehman, Thomas</creator><creator>Fishbein, Michael C</creator><creator>Hoffman, Hal M</creator><creator>Shah, Prediman K</creator><creator>Shimada, Kenichi</creator><creator>Arditi, Moshe</creator><general>American Heart Association, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201605</creationdate><title>Role of Interleukin-1 Signaling in a Mouse Model of Kawasaki Disease–Associated Abdominal Aortic Aneurysm</title><author>Wakita, Daiko ; Kurashima, Yosuke ; Crother, Timothy R ; Noval Rivas, Magali ; Lee, Youngho ; Chen, Shuang ; Fury, Wen ; Bai, Yu ; Wagner, Shawn ; Li, Debiao ; Lehman, Thomas ; Fishbein, Michael C ; Hoffman, Hal M ; Shah, Prediman K ; Shimada, Kenichi ; Arditi, Moshe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5092-aa1a3ff40cfaae7f37095bfb7c61b2f18e558e89e0ab12f389345af4418a35773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Aorta, Abdominal - drug effects</topic><topic>Aorta, Abdominal - metabolism</topic><topic>Aorta, Abdominal - pathology</topic><topic>Aortic Aneurysm, Abdominal - genetics</topic><topic>Aortic Aneurysm, Abdominal - metabolism</topic><topic>Aortic Aneurysm, Abdominal - pathology</topic><topic>Aortic Aneurysm, Abdominal - prevention & control</topic><topic>Aortitis - genetics</topic><topic>Aortitis - metabolism</topic><topic>Aortitis - pathology</topic><topic>Caspase 1 - deficiency</topic><topic>Caspase 1 - genetics</topic><topic>Cell Proliferation</topic><topic>Cell Wall</topic><topic>Dilatation, Pathologic</topic><topic>Disease Models, Animal</topic><topic>Elastin - metabolism</topic><topic>Female</topic><topic>Gene Expression Profiling</topic><topic>Genotype</topic><topic>Humans</topic><topic>Interleukin 1 Receptor Antagonist Protein - pharmacology</topic><topic>Interleukin-1alpha - deficiency</topic><topic>Interleukin-1alpha - genetics</topic><topic>Interleukin-1alpha - metabolism</topic><topic>Interleukin-1beta - deficiency</topic><topic>Interleukin-1beta - genetics</topic><topic>Interleukin-1beta - metabolism</topic><topic>Lactobacillus casei</topic><topic>Macrophages - metabolism</topic><topic>Macrophages - pathology</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mucocutaneous Lymph Node Syndrome - chemically induced</topic><topic>Mucocutaneous Lymph Node Syndrome - complications</topic><topic>Mucocutaneous Lymph Node Syndrome - drug therapy</topic><topic>Muscle, Smooth, Vascular - metabolism</topic><topic>Muscle, Smooth, Vascular - pathology</topic><topic>Myocytes, Smooth Muscle - metabolism</topic><topic>Myocytes, Smooth Muscle - pathology</topic><topic>NLR Family, Pyrin Domain-Containing 3 Protein - deficiency</topic><topic>NLR Family, Pyrin Domain-Containing 3 Protein - genetics</topic><topic>Phenotype</topic><topic>Receptors, Interleukin-1 Type I - deficiency</topic><topic>Receptors, Interleukin-1 Type I - genetics</topic><topic>Receptors, Interleukin-1 Type I - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wakita, Daiko</creatorcontrib><creatorcontrib>Kurashima, Yosuke</creatorcontrib><creatorcontrib>Crother, Timothy R</creatorcontrib><creatorcontrib>Noval Rivas, Magali</creatorcontrib><creatorcontrib>Lee, Youngho</creatorcontrib><creatorcontrib>Chen, Shuang</creatorcontrib><creatorcontrib>Fury, Wen</creatorcontrib><creatorcontrib>Bai, Yu</creatorcontrib><creatorcontrib>Wagner, Shawn</creatorcontrib><creatorcontrib>Li, Debiao</creatorcontrib><creatorcontrib>Lehman, Thomas</creatorcontrib><creatorcontrib>Fishbein, Michael C</creatorcontrib><creatorcontrib>Hoffman, Hal M</creatorcontrib><creatorcontrib>Shah, Prediman K</creatorcontrib><creatorcontrib>Shimada, Kenichi</creatorcontrib><creatorcontrib>Arditi, Moshe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wakita, Daiko</au><au>Kurashima, Yosuke</au><au>Crother, Timothy R</au><au>Noval Rivas, Magali</au><au>Lee, Youngho</au><au>Chen, Shuang</au><au>Fury, Wen</au><au>Bai, Yu</au><au>Wagner, Shawn</au><au>Li, Debiao</au><au>Lehman, Thomas</au><au>Fishbein, Michael C</au><au>Hoffman, Hal M</au><au>Shah, Prediman K</au><au>Shimada, Kenichi</au><au>Arditi, Moshe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Interleukin-1 Signaling in a Mouse Model of Kawasaki Disease–Associated Abdominal Aortic Aneurysm</atitle><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle><addtitle>Arterioscler Thromb Vasc Biol</addtitle><date>2016-05</date><risdate>2016</risdate><volume>36</volume><issue>5</issue><spage>886</spage><epage>897</epage><pages>886-897</pages><issn>1079-5642</issn><eissn>1524-4636</eissn><abstract>OBJECTIVE—Kawasaki disease (KD) is the most common cause of acquired cardiac disease in US children. In addition to coronary artery abnormalities and aneurysms, it can be associated with systemic arterial aneurysms. We evaluated the development of systemic arterial dilatation and aneurysms, including abdominal aortic aneurysm (AAA) in the Lactobacillus casei cell-wall extract (LCWE)–induced KD vasculitis mouse model.
METHODS AND RESULTS—We discovered that in addition to aortitis, coronary arteritis and myocarditis, the LCWE-induced KD mouse model is also associated with abdominal aorta dilatation and AAA, as well as renal and iliac artery aneurysms. AAA induced in KD mice was exclusively infrarenal, both fusiform and saccular, with intimal proliferation, myofibroblastic proliferation, break in the elastin layer, vascular smooth muscle cell loss, and inflammatory cell accumulation in the media and adventitia. Il1r, Il1a, and Il1b mice were protected from KD associated AAA. Infiltrating CD11c macrophages produced active caspase-1, and caspase-1 or NLRP3 deficiency inhibited AAA formation. Treatment with interleukin (IL)-1R antagonist (Anakinra), anti–IL-1α, or anti–IL-1β mAb blocked LCWE-induced AAA formation.
CONCLUSIONS—Similar to clinical KD, the LCWE-induced KD vasculitis mouse model can also be accompanied by AAA formation. Both IL-1α and IL-1β play a key role, and use of an IL-1R blocking agent that inhibits both pathways may be a promising therapeutic target not only for KD coronary arteritis, but also for the other systemic arterial aneurysms including AAA that maybe seen in severe cases of KD. The LCWE-induced vasculitis model may also represent an alternative model for AAA disease.</abstract><cop>United States</cop><pub>American Heart Association, Inc</pub><pmid>26941015</pmid><doi>10.1161/ATVBAHA.115.307072</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1079-5642 |
ispartof | Arteriosclerosis, thrombosis, and vascular biology, 2016-05, Vol.36 (5), p.886-897 |
issn | 1079-5642 1524-4636 |
language | eng |
recordid | cdi_proquest_miscellaneous_1785730842 |
source | Journals@Ovid Complete - AutoHoldings; MEDLINE; Alma/SFX Local Collection |
subjects | Animals Aorta, Abdominal - drug effects Aorta, Abdominal - metabolism Aorta, Abdominal - pathology Aortic Aneurysm, Abdominal - genetics Aortic Aneurysm, Abdominal - metabolism Aortic Aneurysm, Abdominal - pathology Aortic Aneurysm, Abdominal - prevention & control Aortitis - genetics Aortitis - metabolism Aortitis - pathology Caspase 1 - deficiency Caspase 1 - genetics Cell Proliferation Cell Wall Dilatation, Pathologic Disease Models, Animal Elastin - metabolism Female Gene Expression Profiling Genotype Humans Interleukin 1 Receptor Antagonist Protein - pharmacology Interleukin-1alpha - deficiency Interleukin-1alpha - genetics Interleukin-1alpha - metabolism Interleukin-1beta - deficiency Interleukin-1beta - genetics Interleukin-1beta - metabolism Lactobacillus casei Macrophages - metabolism Macrophages - pathology Male Mice, Inbred C57BL Mice, Knockout Mucocutaneous Lymph Node Syndrome - chemically induced Mucocutaneous Lymph Node Syndrome - complications Mucocutaneous Lymph Node Syndrome - drug therapy Muscle, Smooth, Vascular - metabolism Muscle, Smooth, Vascular - pathology Myocytes, Smooth Muscle - metabolism Myocytes, Smooth Muscle - pathology NLR Family, Pyrin Domain-Containing 3 Protein - deficiency NLR Family, Pyrin Domain-Containing 3 Protein - genetics Phenotype Receptors, Interleukin-1 Type I - deficiency Receptors, Interleukin-1 Type I - genetics Receptors, Interleukin-1 Type I - metabolism Signal Transduction - drug effects Time Factors |
title | Role of Interleukin-1 Signaling in a Mouse Model of Kawasaki Disease–Associated Abdominal Aortic Aneurysm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A26%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Interleukin-1%20Signaling%20in%20a%20Mouse%20Model%20of%20Kawasaki%20Disease%E2%80%93Associated%20Abdominal%20Aortic%20Aneurysm&rft.jtitle=Arteriosclerosis,%20thrombosis,%20and%20vascular%20biology&rft.au=Wakita,%20Daiko&rft.date=2016-05&rft.volume=36&rft.issue=5&rft.spage=886&rft.epage=897&rft.pages=886-897&rft.issn=1079-5642&rft.eissn=1524-4636&rft_id=info:doi/10.1161/ATVBAHA.115.307072&rft_dat=%3Cproquest_cross%3E1785730842%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1785730842&rft_id=info:pmid/26941015&rfr_iscdi=true |