Applications, Behaviour and Design of Composite Steel-Concrete Structures

The behaviour of composite steel-concrete beams subjected to pure flexure and the presence of flexure and shear is fairly well understood and provisions do exist in international codes of practice for their design, however in most instances the influence of the concrete slab is not included in the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in structural engineering 2012-09, Vol.15 (9), p.1559-1571
1. Verfasser: Uy, B.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1571
container_issue 9
container_start_page 1559
container_title Advances in structural engineering
container_volume 15
creator Uy, B.
description The behaviour of composite steel-concrete beams subjected to pure flexure and the presence of flexure and shear is fairly well understood and provisions do exist in international codes of practice for their design, however in most instances the influence of the concrete slab is not included in the strength design of the composite beam in shear. Combined internal actions including the presence of torsion and flexure have also been considered of late. These actions combine to occur in edge beams and curved composite beams and thus are of significant practical interest. Of increasing interest has become the presence of axial force and flexure in composite beams. These internal actions need to be considered in the design of raking beams of stadia, elevated approach spans for bridges and interchanges and in the design of integral abutment bridges and cable stayed bridges. Furthermore, composite beams in floor systems for braced multi-storey buildings are often required to resist axial force, flexure and shear force. This paper considers the effects of the presence of axial force in conventional composite beams. The effects of different forms of axial force and flexure combinations are considered in this paper. An analytical treatment, experiments and design approaches are given in this paper which is useful for structural engineers. Furthermore research in this area is also discussed. This paper will also present the results of an extensive experimental series to study the behaviour of high performance steel sections subjected to transverse impact loads which are able to simulate either a collision or blast. The experimental program has considered both mild structural steel and stainless steel hollow sections both filled and unfilled being tested. The purpose of the tests was to identify the potential advantages of using concrete infill to increase the energy absorption capability of steel hollow sections.
doi_str_mv 10.1260/1369-4332.15.9.1559
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1785250275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1260_1369-4332.15.9.1559</sage_id><sourcerecordid>1136478031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-c46f5c7f197afcbe75afa0ea5d0a0e2d4a312683952989a9a1087b843c4da76b3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEuXxBWyyZEGKn3G8LOFVqRILYG25zqS4SuNgJ0j8PQ5FLGEzVyOdO9IchC4InhNa4GvCCpVzxuiciLlKQ6gDNKOYlznHhByi2S9xjE5i3GJMqJRkhpaLvm-dNYPzXbzKbuDNfDg_hsx0dXYL0W26zDdZ5Xe9j26A7HkAaPPKdzbA9xpGO4wB4hk6akwb4fwnT9Hr_d1L9Zivnh6W1WKVWyaKIbe8aISVDVHSNHYNUpjGYDCixilozQ1LL5VMCapKZZQhuJTrkjPLayOLNTtFl_u7ffDvI8RB71y00LamAz9GTWQpqMBUiv_RZIXLEjOSULZHbfAxBmh0H9zOhE9NsJ4c68mgngxqIrTSk-PUwvtWNBvQ2-StS6__WfkCeZV85g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1136478031</pqid></control><display><type>article</type><title>Applications, Behaviour and Design of Composite Steel-Concrete Structures</title><source>SAGE Complete A-Z List</source><creator>Uy, B.</creator><creatorcontrib>Uy, B.</creatorcontrib><description>The behaviour of composite steel-concrete beams subjected to pure flexure and the presence of flexure and shear is fairly well understood and provisions do exist in international codes of practice for their design, however in most instances the influence of the concrete slab is not included in the strength design of the composite beam in shear. Combined internal actions including the presence of torsion and flexure have also been considered of late. These actions combine to occur in edge beams and curved composite beams and thus are of significant practical interest. Of increasing interest has become the presence of axial force and flexure in composite beams. These internal actions need to be considered in the design of raking beams of stadia, elevated approach spans for bridges and interchanges and in the design of integral abutment bridges and cable stayed bridges. Furthermore, composite beams in floor systems for braced multi-storey buildings are often required to resist axial force, flexure and shear force. This paper considers the effects of the presence of axial force in conventional composite beams. The effects of different forms of axial force and flexure combinations are considered in this paper. An analytical treatment, experiments and design approaches are given in this paper which is useful for structural engineers. Furthermore research in this area is also discussed. This paper will also present the results of an extensive experimental series to study the behaviour of high performance steel sections subjected to transverse impact loads which are able to simulate either a collision or blast. The experimental program has considered both mild structural steel and stainless steel hollow sections both filled and unfilled being tested. The purpose of the tests was to identify the potential advantages of using concrete infill to increase the energy absorption capability of steel hollow sections.</description><identifier>ISSN: 1369-4332</identifier><identifier>EISSN: 2048-4011</identifier><identifier>DOI: 10.1260/1369-4332.15.9.1559</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Advances in structural engineering, 2012-09, Vol.15 (9), p.1559-1571</ispartof><rights>2012 SAGE Publications</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-c46f5c7f197afcbe75afa0ea5d0a0e2d4a312683952989a9a1087b843c4da76b3</citedby><cites>FETCH-LOGICAL-c356t-c46f5c7f197afcbe75afa0ea5d0a0e2d4a312683952989a9a1087b843c4da76b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1260/1369-4332.15.9.1559$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1260/1369-4332.15.9.1559$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Uy, B.</creatorcontrib><title>Applications, Behaviour and Design of Composite Steel-Concrete Structures</title><title>Advances in structural engineering</title><description>The behaviour of composite steel-concrete beams subjected to pure flexure and the presence of flexure and shear is fairly well understood and provisions do exist in international codes of practice for their design, however in most instances the influence of the concrete slab is not included in the strength design of the composite beam in shear. Combined internal actions including the presence of torsion and flexure have also been considered of late. These actions combine to occur in edge beams and curved composite beams and thus are of significant practical interest. Of increasing interest has become the presence of axial force and flexure in composite beams. These internal actions need to be considered in the design of raking beams of stadia, elevated approach spans for bridges and interchanges and in the design of integral abutment bridges and cable stayed bridges. Furthermore, composite beams in floor systems for braced multi-storey buildings are often required to resist axial force, flexure and shear force. This paper considers the effects of the presence of axial force in conventional composite beams. The effects of different forms of axial force and flexure combinations are considered in this paper. An analytical treatment, experiments and design approaches are given in this paper which is useful for structural engineers. Furthermore research in this area is also discussed. This paper will also present the results of an extensive experimental series to study the behaviour of high performance steel sections subjected to transverse impact loads which are able to simulate either a collision or blast. The experimental program has considered both mild structural steel and stainless steel hollow sections both filled and unfilled being tested. The purpose of the tests was to identify the potential advantages of using concrete infill to increase the energy absorption capability of steel hollow sections.</description><issn>1369-4332</issn><issn>2048-4011</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEuXxBWyyZEGKn3G8LOFVqRILYG25zqS4SuNgJ0j8PQ5FLGEzVyOdO9IchC4InhNa4GvCCpVzxuiciLlKQ6gDNKOYlznHhByi2S9xjE5i3GJMqJRkhpaLvm-dNYPzXbzKbuDNfDg_hsx0dXYL0W26zDdZ5Xe9j26A7HkAaPPKdzbA9xpGO4wB4hk6akwb4fwnT9Hr_d1L9Zivnh6W1WKVWyaKIbe8aISVDVHSNHYNUpjGYDCixilozQ1LL5VMCapKZZQhuJTrkjPLayOLNTtFl_u7ffDvI8RB71y00LamAz9GTWQpqMBUiv_RZIXLEjOSULZHbfAxBmh0H9zOhE9NsJ4c68mgngxqIrTSk-PUwvtWNBvQ2-StS6__WfkCeZV85g</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Uy, B.</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7U2</scope><scope>C1K</scope><scope>7SU</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>201209</creationdate><title>Applications, Behaviour and Design of Composite Steel-Concrete Structures</title><author>Uy, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-c46f5c7f197afcbe75afa0ea5d0a0e2d4a312683952989a9a1087b843c4da76b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uy, B.</creatorcontrib><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Advances in structural engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uy, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applications, Behaviour and Design of Composite Steel-Concrete Structures</atitle><jtitle>Advances in structural engineering</jtitle><date>2012-09</date><risdate>2012</risdate><volume>15</volume><issue>9</issue><spage>1559</spage><epage>1571</epage><pages>1559-1571</pages><issn>1369-4332</issn><eissn>2048-4011</eissn><abstract>The behaviour of composite steel-concrete beams subjected to pure flexure and the presence of flexure and shear is fairly well understood and provisions do exist in international codes of practice for their design, however in most instances the influence of the concrete slab is not included in the strength design of the composite beam in shear. Combined internal actions including the presence of torsion and flexure have also been considered of late. These actions combine to occur in edge beams and curved composite beams and thus are of significant practical interest. Of increasing interest has become the presence of axial force and flexure in composite beams. These internal actions need to be considered in the design of raking beams of stadia, elevated approach spans for bridges and interchanges and in the design of integral abutment bridges and cable stayed bridges. Furthermore, composite beams in floor systems for braced multi-storey buildings are often required to resist axial force, flexure and shear force. This paper considers the effects of the presence of axial force in conventional composite beams. The effects of different forms of axial force and flexure combinations are considered in this paper. An analytical treatment, experiments and design approaches are given in this paper which is useful for structural engineers. Furthermore research in this area is also discussed. This paper will also present the results of an extensive experimental series to study the behaviour of high performance steel sections subjected to transverse impact loads which are able to simulate either a collision or blast. The experimental program has considered both mild structural steel and stainless steel hollow sections both filled and unfilled being tested. The purpose of the tests was to identify the potential advantages of using concrete infill to increase the energy absorption capability of steel hollow sections.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1260/1369-4332.15.9.1559</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1369-4332
ispartof Advances in structural engineering, 2012-09, Vol.15 (9), p.1559-1571
issn 1369-4332
2048-4011
language eng
recordid cdi_proquest_miscellaneous_1785250275
source SAGE Complete A-Z List
title Applications, Behaviour and Design of Composite Steel-Concrete Structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A32%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applications,%20Behaviour%20and%20Design%20of%20Composite%20Steel-Concrete%20Structures&rft.jtitle=Advances%20in%20structural%20engineering&rft.au=Uy,%20B.&rft.date=2012-09&rft.volume=15&rft.issue=9&rft.spage=1559&rft.epage=1571&rft.pages=1559-1571&rft.issn=1369-4332&rft.eissn=2048-4011&rft_id=info:doi/10.1260/1369-4332.15.9.1559&rft_dat=%3Cproquest_cross%3E1136478031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1136478031&rft_id=info:pmid/&rft_sage_id=10.1260_1369-4332.15.9.1559&rfr_iscdi=true