Energy consumption prediction using people dynamics derived from cellular network data
Energy efficiency is a key challenge for building sustainable societies. Due to growing populations, increasing incomes and the industrialization of developing countries, the world primary energy consumption is expected to increase annually by 1.6%. This scenario raises issues related to the increas...
Gespeichert in:
Veröffentlicht in: | EPJ data science 2016-12, Vol.5 (1), p.13-15, Article 13 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 1 |
container_start_page | 13 |
container_title | EPJ data science |
container_volume | 5 |
creator | Bogomolov, Andrey Lepri, Bruno Larcher, Roberto Antonelli, Fabrizio Pianesi, Fabio Pentland, Alex |
description | Energy efficiency is a key challenge for building sustainable societies. Due to growing populations, increasing incomes and the industrialization of developing countries, the world primary energy consumption is expected to increase annually by 1.6%. This scenario raises issues related to the increasing scarcity of natural resources, the accelerating pollution of the environment, and the looming threat of global climate change.
In this paper we introduce a new and original approach to predict next week energy consumption based on human dynamics analysis derived out of the anonymized and aggregated telecom data, which is processed from GSM network call data records (CDRs). We introduce an original problem statement, analyze regularities of the source data, provide insight on the original feature extraction method and discuss peculiarities of the regression models applicable for this big data problem.
The proposed solution could act on energy producers/distributors as an essential aid to smart meters data for making better decisions in reducing total primary energy consumption by limiting energy production when the demand is not predicted, reducing energy distribution costs by efficient buy-side planning in time and providing insights for peak load planning in geographic space. |
doi_str_mv | 10.1140/epjds/s13688-016-0075-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1785247627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4017382391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-d53bc8d9e897780961e09e7bf6dc0b5957fac1e00fec258fb2563f10168ef4fa3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhCMEElXpM2CJC5dQO05s54iq8iNV4gJcLcdeVymJHewE1LcnaTlUXDjtaPXNanaS5JrgO0JyvIRuZ-IyEsqESDFhKca8SOlZMstISVNCMn5-oi-TRYw7jDGhWUEZmyXvawdhu0fauzi0XV97h7oAptYHOcTabVEHvmsAmb1Tba0jMhDqLzDIBt8iDU0zNCogB_23Dx_IqF5dJRdWNREWv3OevD2sX1dP6ebl8Xl1v0l1TlifmoJWWpgSRMm5wCUjgEvglWVG46ooC26VHnfYgs4KYausYNSS8VEBNreKzpPb490u-M8BYi_bOk6JlAM_REm4KLKcs4yP6M0fdOeH4MZ0I8XLklLOJ4ofKR18jAGs7ELdqrCXBMupcnmoXB4rl2MSOVUu6egUR2ccHW4L4eT-P9YfYHyJrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779933777</pqid></control><display><type>article</type><title>Energy consumption prediction using people dynamics derived from cellular network data</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA/Free Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Bogomolov, Andrey ; Lepri, Bruno ; Larcher, Roberto ; Antonelli, Fabrizio ; Pianesi, Fabio ; Pentland, Alex</creator><creatorcontrib>Bogomolov, Andrey ; Lepri, Bruno ; Larcher, Roberto ; Antonelli, Fabrizio ; Pianesi, Fabio ; Pentland, Alex</creatorcontrib><description>Energy efficiency is a key challenge for building sustainable societies. Due to growing populations, increasing incomes and the industrialization of developing countries, the world primary energy consumption is expected to increase annually by 1.6%. This scenario raises issues related to the increasing scarcity of natural resources, the accelerating pollution of the environment, and the looming threat of global climate change.
In this paper we introduce a new and original approach to predict next week energy consumption based on human dynamics analysis derived out of the anonymized and aggregated telecom data, which is processed from GSM network call data records (CDRs). We introduce an original problem statement, analyze regularities of the source data, provide insight on the original feature extraction method and discuss peculiarities of the regression models applicable for this big data problem.
The proposed solution could act on energy producers/distributors as an essential aid to smart meters data for making better decisions in reducing total primary energy consumption by limiting energy production when the demand is not predicted, reducing energy distribution costs by efficient buy-side planning in time and providing insights for peak load planning in geographic space.</description><identifier>ISSN: 2193-1127</identifier><identifier>EISSN: 2193-1127</identifier><identifier>DOI: 10.1140/epjds/s13688-016-0075-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Advances in data-driven computational social sciences ; Big Data ; Climate change ; Complexity ; Computer Appl. in Social and Behavioral Sciences ; Computer Science ; Data-driven Science ; Developing countries ; Distribution costs ; Electrical loads ; Energy consumption ; Energy costs ; Energy distribution ; Energy efficiency ; Feature extraction ; Global climate ; LDCs ; Modeling and Theory Building ; Natural resources ; Peak load ; Regression analysis ; Regression models ; Regular Article</subject><ispartof>EPJ data science, 2016-12, Vol.5 (1), p.13-15, Article 13</ispartof><rights>Bogomolov et al. 2016</rights><rights>Bogomolov et al. 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-d53bc8d9e897780961e09e7bf6dc0b5957fac1e00fec258fb2563f10168ef4fa3</citedby><cites>FETCH-LOGICAL-c416t-d53bc8d9e897780961e09e7bf6dc0b5957fac1e00fec258fb2563f10168ef4fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjds/s13688-016-0075-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1140/epjds/s13688-016-0075-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27923,27924,41119,41487,42188,42556,51318,51575</link.rule.ids></links><search><creatorcontrib>Bogomolov, Andrey</creatorcontrib><creatorcontrib>Lepri, Bruno</creatorcontrib><creatorcontrib>Larcher, Roberto</creatorcontrib><creatorcontrib>Antonelli, Fabrizio</creatorcontrib><creatorcontrib>Pianesi, Fabio</creatorcontrib><creatorcontrib>Pentland, Alex</creatorcontrib><title>Energy consumption prediction using people dynamics derived from cellular network data</title><title>EPJ data science</title><addtitle>EPJ Data Sci</addtitle><description>Energy efficiency is a key challenge for building sustainable societies. Due to growing populations, increasing incomes and the industrialization of developing countries, the world primary energy consumption is expected to increase annually by 1.6%. This scenario raises issues related to the increasing scarcity of natural resources, the accelerating pollution of the environment, and the looming threat of global climate change.
In this paper we introduce a new and original approach to predict next week energy consumption based on human dynamics analysis derived out of the anonymized and aggregated telecom data, which is processed from GSM network call data records (CDRs). We introduce an original problem statement, analyze regularities of the source data, provide insight on the original feature extraction method and discuss peculiarities of the regression models applicable for this big data problem.
The proposed solution could act on energy producers/distributors as an essential aid to smart meters data for making better decisions in reducing total primary energy consumption by limiting energy production when the demand is not predicted, reducing energy distribution costs by efficient buy-side planning in time and providing insights for peak load planning in geographic space.</description><subject>Advances in data-driven computational social sciences</subject><subject>Big Data</subject><subject>Climate change</subject><subject>Complexity</subject><subject>Computer Appl. in Social and Behavioral Sciences</subject><subject>Computer Science</subject><subject>Data-driven Science</subject><subject>Developing countries</subject><subject>Distribution costs</subject><subject>Electrical loads</subject><subject>Energy consumption</subject><subject>Energy costs</subject><subject>Energy distribution</subject><subject>Energy efficiency</subject><subject>Feature extraction</subject><subject>Global climate</subject><subject>LDCs</subject><subject>Modeling and Theory Building</subject><subject>Natural resources</subject><subject>Peak load</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Regular Article</subject><issn>2193-1127</issn><issn>2193-1127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkM1OwzAQhCMEElXpM2CJC5dQO05s54iq8iNV4gJcLcdeVymJHewE1LcnaTlUXDjtaPXNanaS5JrgO0JyvIRuZ-IyEsqESDFhKca8SOlZMstISVNCMn5-oi-TRYw7jDGhWUEZmyXvawdhu0fauzi0XV97h7oAptYHOcTabVEHvmsAmb1Tba0jMhDqLzDIBt8iDU0zNCogB_23Dx_IqF5dJRdWNREWv3OevD2sX1dP6ebl8Xl1v0l1TlifmoJWWpgSRMm5wCUjgEvglWVG46ooC26VHnfYgs4KYausYNSS8VEBNreKzpPb490u-M8BYi_bOk6JlAM_REm4KLKcs4yP6M0fdOeH4MZ0I8XLklLOJ4ofKR18jAGs7ELdqrCXBMupcnmoXB4rl2MSOVUu6egUR2ccHW4L4eT-P9YfYHyJrQ</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Bogomolov, Andrey</creator><creator>Lepri, Bruno</creator><creator>Larcher, Roberto</creator><creator>Antonelli, Fabrizio</creator><creator>Pianesi, Fabio</creator><creator>Pentland, Alex</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>7ST</scope><scope>7TV</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>20161201</creationdate><title>Energy consumption prediction using people dynamics derived from cellular network data</title><author>Bogomolov, Andrey ; Lepri, Bruno ; Larcher, Roberto ; Antonelli, Fabrizio ; Pianesi, Fabio ; Pentland, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-d53bc8d9e897780961e09e7bf6dc0b5957fac1e00fec258fb2563f10168ef4fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Advances in data-driven computational social sciences</topic><topic>Big Data</topic><topic>Climate change</topic><topic>Complexity</topic><topic>Computer Appl. in Social and Behavioral Sciences</topic><topic>Computer Science</topic><topic>Data-driven Science</topic><topic>Developing countries</topic><topic>Distribution costs</topic><topic>Electrical loads</topic><topic>Energy consumption</topic><topic>Energy costs</topic><topic>Energy distribution</topic><topic>Energy efficiency</topic><topic>Feature extraction</topic><topic>Global climate</topic><topic>LDCs</topic><topic>Modeling and Theory Building</topic><topic>Natural resources</topic><topic>Peak load</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Regular Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bogomolov, Andrey</creatorcontrib><creatorcontrib>Lepri, Bruno</creatorcontrib><creatorcontrib>Larcher, Roberto</creatorcontrib><creatorcontrib>Antonelli, Fabrizio</creatorcontrib><creatorcontrib>Pianesi, Fabio</creatorcontrib><creatorcontrib>Pentland, Alex</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>EPJ data science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bogomolov, Andrey</au><au>Lepri, Bruno</au><au>Larcher, Roberto</au><au>Antonelli, Fabrizio</au><au>Pianesi, Fabio</au><au>Pentland, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy consumption prediction using people dynamics derived from cellular network data</atitle><jtitle>EPJ data science</jtitle><stitle>EPJ Data Sci</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>5</volume><issue>1</issue><spage>13</spage><epage>15</epage><pages>13-15</pages><artnum>13</artnum><issn>2193-1127</issn><eissn>2193-1127</eissn><abstract>Energy efficiency is a key challenge for building sustainable societies. Due to growing populations, increasing incomes and the industrialization of developing countries, the world primary energy consumption is expected to increase annually by 1.6%. This scenario raises issues related to the increasing scarcity of natural resources, the accelerating pollution of the environment, and the looming threat of global climate change.
In this paper we introduce a new and original approach to predict next week energy consumption based on human dynamics analysis derived out of the anonymized and aggregated telecom data, which is processed from GSM network call data records (CDRs). We introduce an original problem statement, analyze regularities of the source data, provide insight on the original feature extraction method and discuss peculiarities of the regression models applicable for this big data problem.
The proposed solution could act on energy producers/distributors as an essential aid to smart meters data for making better decisions in reducing total primary energy consumption by limiting energy production when the demand is not predicted, reducing energy distribution costs by efficient buy-side planning in time and providing insights for peak load planning in geographic space.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjds/s13688-016-0075-3</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2193-1127 |
ispartof | EPJ data science, 2016-12, Vol.5 (1), p.13-15, Article 13 |
issn | 2193-1127 2193-1127 |
language | eng |
recordid | cdi_proquest_miscellaneous_1785247627 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA/Free Journals; SpringerLink Journals - AutoHoldings |
subjects | Advances in data-driven computational social sciences Big Data Climate change Complexity Computer Appl. in Social and Behavioral Sciences Computer Science Data-driven Science Developing countries Distribution costs Electrical loads Energy consumption Energy costs Energy distribution Energy efficiency Feature extraction Global climate LDCs Modeling and Theory Building Natural resources Peak load Regression analysis Regression models Regular Article |
title | Energy consumption prediction using people dynamics derived from cellular network data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A59%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20consumption%20prediction%20using%20people%20dynamics%20derived%20from%20cellular%20network%20data&rft.jtitle=EPJ%20data%20science&rft.au=Bogomolov,%20Andrey&rft.date=2016-12-01&rft.volume=5&rft.issue=1&rft.spage=13&rft.epage=15&rft.pages=13-15&rft.artnum=13&rft.issn=2193-1127&rft.eissn=2193-1127&rft_id=info:doi/10.1140/epjds/s13688-016-0075-3&rft_dat=%3Cproquest_cross%3E4017382391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1779933777&rft_id=info:pmid/&rfr_iscdi=true |