Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models

Summary Modern species distribution models account for spatial autocorrelation in order to obtain unbiased statistical inference on the effects of covariates, to improve the model's predictive ability through spatial interpolation and to gain insight in the spatial processes shaping the data. S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods in ecology and evolution 2016-04, Vol.7 (4), p.428-436
Hauptverfasser: Ovaskainen, Otso, Roy, David B., Fox, Richard, Anderson, Barbara J., Orme, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 436
container_issue 4
container_start_page 428
container_title Methods in ecology and evolution
container_volume 7
creator Ovaskainen, Otso
Roy, David B.
Fox, Richard
Anderson, Barbara J.
Orme, David
description Summary Modern species distribution models account for spatial autocorrelation in order to obtain unbiased statistical inference on the effects of covariates, to improve the model's predictive ability through spatial interpolation and to gain insight in the spatial processes shaping the data. Somewhat analogously, hierarchical approaches to community‐level data have been developed to gain insights into community‐level processes and to improve species‐level inference by borrowing information from other species that are either ecologically or phylogenetically related to the focal species. We unify spatial and community‐level structures by developing spatially explicit joint species distribution models. The models utilize spatially structured latent factors to model missing covariates as well as species‐to‐species associations in a statistically and computationally effective manner. We illustrate that the inclusion of the spatial latent factors greatly increases the predictive performance of the modelling approach with a case study of 55 species of butterfly recorded on a 10 km × 10 km grid in Great Britain consisting of 2609 grid cells.
doi_str_mv 10.1111/2041-210X.12502
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1785246651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1785246651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4182-b0e77d9efb894bd78ae0e00ee7bf38a92309addfae4c4fc765a92e3304177ffd3</originalsourceid><addsrcrecordid>eNqFkb1PwzAQxSMEEhV0Zo3EwpLWdj6cjKgqH1IRC5XYLMe-UFdJHGyH0v8eh0CFGOAWn55-73S-FwQXGM2wrzlBCY4IRs8zTFJEjoLJQTn-0Z8GU2u3yFecF4gkk8CtW6HfwKj2JdwoKaENbced4nVonemF6w2EahBBKLCh0E3Tt8oN_U65zTdd70N472ollAu3WrXu4JDKD1Jl75Ruw0ZLqO15cFLx2sL06z0L1jfLp8VdtHq8vV9cryKR4JxEJQJKZQFVmRdJKWnOAQFCALSs4pwXJEYFl7LikIikEjRLvQZx7H9LaVXJ-Cy4Gud2Rr_2YB1rlBVQ17wF3VuGaZ6SJMtS7NHLX-hW96b12zESk4ziBGfpX5Sf5c-a--t7aj5SwmhrDVSsM6rhZs8wYkNcbAiEDYGwz7i8IxsdO1XD_j-cPSyX8Wj8AGtRmUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1780008250</pqid></control><display><type>article</type><title>Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Alma/SFX Local Collection</source><creator>Ovaskainen, Otso ; Roy, David B. ; Fox, Richard ; Anderson, Barbara J. ; Orme, David</creator><contributor>Orme, David</contributor><creatorcontrib>Ovaskainen, Otso ; Roy, David B. ; Fox, Richard ; Anderson, Barbara J. ; Orme, David ; Orme, David</creatorcontrib><description>Summary Modern species distribution models account for spatial autocorrelation in order to obtain unbiased statistical inference on the effects of covariates, to improve the model's predictive ability through spatial interpolation and to gain insight in the spatial processes shaping the data. Somewhat analogously, hierarchical approaches to community‐level data have been developed to gain insights into community‐level processes and to improve species‐level inference by borrowing information from other species that are either ecologically or phylogenetically related to the focal species. We unify spatial and community‐level structures by developing spatially explicit joint species distribution models. The models utilize spatially structured latent factors to model missing covariates as well as species‐to‐species associations in a statistically and computationally effective manner. We illustrate that the inclusion of the spatial latent factors greatly increases the predictive performance of the modelling approach with a case study of 55 species of butterfly recorded on a 10 km × 10 km grid in Great Britain consisting of 2609 grid cells.</description><identifier>ISSN: 2041-210X</identifier><identifier>EISSN: 2041-210X</identifier><identifier>DOI: 10.1111/2041-210X.12502</identifier><language>eng</language><publisher>London: John Wiley &amp; Sons, Inc</publisher><subject>Butterflies &amp; moths ; community models ; Geographical distribution ; Interpolation ; joint species distribution models ; latent factors ; Performance prediction ; Phylogeny ; Spatial data ; spatial models ; Species ; Statistical analysis ; Statistical inference</subject><ispartof>Methods in ecology and evolution, 2016-04, Vol.7 (4), p.428-436</ispartof><rights>2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society</rights><rights>Methods in Ecology and Evolution © 2016 British Ecological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4182-b0e77d9efb894bd78ae0e00ee7bf38a92309addfae4c4fc765a92e3304177ffd3</citedby><cites>FETCH-LOGICAL-c4182-b0e77d9efb894bd78ae0e00ee7bf38a92309addfae4c4fc765a92e3304177ffd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F2041-210X.12502$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F2041-210X.12502$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><contributor>Orme, David</contributor><creatorcontrib>Ovaskainen, Otso</creatorcontrib><creatorcontrib>Roy, David B.</creatorcontrib><creatorcontrib>Fox, Richard</creatorcontrib><creatorcontrib>Anderson, Barbara J.</creatorcontrib><creatorcontrib>Orme, David</creatorcontrib><title>Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models</title><title>Methods in ecology and evolution</title><description>Summary Modern species distribution models account for spatial autocorrelation in order to obtain unbiased statistical inference on the effects of covariates, to improve the model's predictive ability through spatial interpolation and to gain insight in the spatial processes shaping the data. Somewhat analogously, hierarchical approaches to community‐level data have been developed to gain insights into community‐level processes and to improve species‐level inference by borrowing information from other species that are either ecologically or phylogenetically related to the focal species. We unify spatial and community‐level structures by developing spatially explicit joint species distribution models. The models utilize spatially structured latent factors to model missing covariates as well as species‐to‐species associations in a statistically and computationally effective manner. We illustrate that the inclusion of the spatial latent factors greatly increases the predictive performance of the modelling approach with a case study of 55 species of butterfly recorded on a 10 km × 10 km grid in Great Britain consisting of 2609 grid cells.</description><subject>Butterflies &amp; moths</subject><subject>community models</subject><subject>Geographical distribution</subject><subject>Interpolation</subject><subject>joint species distribution models</subject><subject>latent factors</subject><subject>Performance prediction</subject><subject>Phylogeny</subject><subject>Spatial data</subject><subject>spatial models</subject><subject>Species</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><issn>2041-210X</issn><issn>2041-210X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkb1PwzAQxSMEEhV0Zo3EwpLWdj6cjKgqH1IRC5XYLMe-UFdJHGyH0v8eh0CFGOAWn55-73S-FwQXGM2wrzlBCY4IRs8zTFJEjoLJQTn-0Z8GU2u3yFecF4gkk8CtW6HfwKj2JdwoKaENbced4nVonemF6w2EahBBKLCh0E3Tt8oN_U65zTdd70N472ollAu3WrXu4JDKD1Jl75Ruw0ZLqO15cFLx2sL06z0L1jfLp8VdtHq8vV9cryKR4JxEJQJKZQFVmRdJKWnOAQFCALSs4pwXJEYFl7LikIikEjRLvQZx7H9LaVXJ-Cy4Gud2Rr_2YB1rlBVQ17wF3VuGaZ6SJMtS7NHLX-hW96b12zESk4ziBGfpX5Sf5c-a--t7aj5SwmhrDVSsM6rhZs8wYkNcbAiEDYGwz7i8IxsdO1XD_j-cPSyX8Wj8AGtRmUQ</recordid><startdate>201604</startdate><enddate>201604</enddate><creator>Ovaskainen, Otso</creator><creator>Roy, David B.</creator><creator>Fox, Richard</creator><creator>Anderson, Barbara J.</creator><creator>Orme, David</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7ST</scope><scope>7U6</scope></search><sort><creationdate>201604</creationdate><title>Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models</title><author>Ovaskainen, Otso ; Roy, David B. ; Fox, Richard ; Anderson, Barbara J. ; Orme, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4182-b0e77d9efb894bd78ae0e00ee7bf38a92309addfae4c4fc765a92e3304177ffd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Butterflies &amp; moths</topic><topic>community models</topic><topic>Geographical distribution</topic><topic>Interpolation</topic><topic>joint species distribution models</topic><topic>latent factors</topic><topic>Performance prediction</topic><topic>Phylogeny</topic><topic>Spatial data</topic><topic>spatial models</topic><topic>Species</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ovaskainen, Otso</creatorcontrib><creatorcontrib>Roy, David B.</creatorcontrib><creatorcontrib>Fox, Richard</creatorcontrib><creatorcontrib>Anderson, Barbara J.</creatorcontrib><creatorcontrib>Orme, David</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Methods in ecology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ovaskainen, Otso</au><au>Roy, David B.</au><au>Fox, Richard</au><au>Anderson, Barbara J.</au><au>Orme, David</au><au>Orme, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models</atitle><jtitle>Methods in ecology and evolution</jtitle><date>2016-04</date><risdate>2016</risdate><volume>7</volume><issue>4</issue><spage>428</spage><epage>436</epage><pages>428-436</pages><issn>2041-210X</issn><eissn>2041-210X</eissn><abstract>Summary Modern species distribution models account for spatial autocorrelation in order to obtain unbiased statistical inference on the effects of covariates, to improve the model's predictive ability through spatial interpolation and to gain insight in the spatial processes shaping the data. Somewhat analogously, hierarchical approaches to community‐level data have been developed to gain insights into community‐level processes and to improve species‐level inference by borrowing information from other species that are either ecologically or phylogenetically related to the focal species. We unify spatial and community‐level structures by developing spatially explicit joint species distribution models. The models utilize spatially structured latent factors to model missing covariates as well as species‐to‐species associations in a statistically and computationally effective manner. We illustrate that the inclusion of the spatial latent factors greatly increases the predictive performance of the modelling approach with a case study of 55 species of butterfly recorded on a 10 km × 10 km grid in Great Britain consisting of 2609 grid cells.</abstract><cop>London</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1111/2041-210X.12502</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-210X
ispartof Methods in ecology and evolution, 2016-04, Vol.7 (4), p.428-436
issn 2041-210X
2041-210X
language eng
recordid cdi_proquest_miscellaneous_1785246651
source Wiley Online Library - AutoHoldings Journals; Alma/SFX Local Collection
subjects Butterflies & moths
community models
Geographical distribution
Interpolation
joint species distribution models
latent factors
Performance prediction
Phylogeny
Spatial data
spatial models
Species
Statistical analysis
Statistical inference
title Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncovering%20hidden%20spatial%20structure%20in%20species%20communities%20with%20spatially%20explicit%20joint%20species%20distribution%20models&rft.jtitle=Methods%20in%20ecology%20and%20evolution&rft.au=Ovaskainen,%20Otso&rft.date=2016-04&rft.volume=7&rft.issue=4&rft.spage=428&rft.epage=436&rft.pages=428-436&rft.issn=2041-210X&rft.eissn=2041-210X&rft_id=info:doi/10.1111/2041-210X.12502&rft_dat=%3Cproquest_cross%3E1785246651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1780008250&rft_id=info:pmid/&rfr_iscdi=true