Applications of DNA Nanotechnology in Synthesis and Assembly of Inorganic Nanomaterials

In addition to its inherited genetic function, DNA is one of the smartest and most flexible self-assembling na- nomaterials with programmable and predictable features, for which, more and more scientists combine DNA with nanomaterials and put them into designing, synthesizing and assembling. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of chemistry 2016-03, Vol.34 (3), p.291-298
Hauptverfasser: Ma, Yurou, Yang, Xiangdong, Wei, Yurong, Yuan, Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 298
container_issue 3
container_start_page 291
container_title Chinese journal of chemistry
container_volume 34
creator Ma, Yurou
Yang, Xiangdong
Wei, Yurong
Yuan, Quan
description In addition to its inherited genetic function, DNA is one of the smartest and most flexible self-assembling na- nomaterials with programmable and predictable features, for which, more and more scientists combine DNA with nanomaterials and put them into designing, synthesizing and assembling. In this review, four modes of action of DNA molecules are introduced in a figurative and intuitive way, based on the four different roles it plays in synthe- sis and assembly of nanomaterials: (a) smart linkers to guide nanoparticle assembly, (b) 2D or 3D scaffold with well-designed binding sites, (c) nucleation sites to directly facilitate Au/Pd/Ag/Cu nanowires, nanoparticles, nano- arrays and (d) serving as capping agents to prevent crystal growth, and control size and morphology. To be sure, this state-of-the-art combination of functional DNA molecules and inorganic nanomaterials greatly encouraged step towards the development of analytical science, life science, environmental science, and other promising field they can address. DNA-guided nanofabrication will eventually exceed expectations far beyond our scope in the near fu- ture.
doi_str_mv 10.1002/cjoc.201500835
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1785231464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>668562509</cqvip_id><sourcerecordid>1785231464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4925-a785f8d78cc0e135ca633839fd72191f4edca6bd8233c1f408c5fd2bb2b8c97b3</originalsourceid><addsrcrecordid>eNqFkEtP6zAQRiMEEs8t6wg2bNLrR_zIshToBaqyAARiYzmO07qkdmun4ubfX5eiCrFhNePROZ7RlySnEPQgAOiPmjnVQwASADgmO8kBpDDPGKBkN_YAwIyC_HU_OQxhFnnGED1IXvqLRWOUbI2zIXV1ejXup2NpXavV1LrGTbrU2PSxs-1UBxNSaau0H4Kel0235m-t8xNpjfq05rLV3sgmHCd7dSz65KseJc8310-Dv9noYXg76I8ylReIZJJxUvOKcaWAhpgoSTHmuKgrhmAB61xXcVRWHGGs4hNwReoKlSUquSpYiY-Si82_C--WKx1aMTdB6aaRVrtVEDAuQBjmNI_o-Q905lbexusixXIGKSUkUr0NpbwLwetaLLyZS98JCMQ6Z7HOWWxzjkKxET5Mo7tfaDG4exh8d7ONa0Kr_21d6d8FZZgR8TIeivvL1yEev43EfeTPvo6bOjtZGjvZOpRyQhEBBf4PWbacVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1774716655</pqid></control><display><type>article</type><title>Applications of DNA Nanotechnology in Synthesis and Assembly of Inorganic Nanomaterials</title><source>Wiley Journals</source><creator>Ma, Yurou ; Yang, Xiangdong ; Wei, Yurong ; Yuan, Quan</creator><creatorcontrib>Ma, Yurou ; Yang, Xiangdong ; Wei, Yurong ; Yuan, Quan</creatorcontrib><description>In addition to its inherited genetic function, DNA is one of the smartest and most flexible self-assembling na- nomaterials with programmable and predictable features, for which, more and more scientists combine DNA with nanomaterials and put them into designing, synthesizing and assembling. In this review, four modes of action of DNA molecules are introduced in a figurative and intuitive way, based on the four different roles it plays in synthe- sis and assembly of nanomaterials: (a) smart linkers to guide nanoparticle assembly, (b) 2D or 3D scaffold with well-designed binding sites, (c) nucleation sites to directly facilitate Au/Pd/Ag/Cu nanowires, nanoparticles, nano- arrays and (d) serving as capping agents to prevent crystal growth, and control size and morphology. To be sure, this state-of-the-art combination of functional DNA molecules and inorganic nanomaterials greatly encouraged step towards the development of analytical science, life science, environmental science, and other promising field they can address. DNA-guided nanofabrication will eventually exceed expectations far beyond our scope in the near fu- ture.</description><identifier>ISSN: 1001-604X</identifier><identifier>EISSN: 1614-7065</identifier><identifier>DOI: 10.1002/cjoc.201500835</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>assembly ; Deoxyribonucleic acid ; DNA ; DNA nanotechnology ; DNA origami ; DNA分子 ; inorganic nanomaterial ; Nanomaterials ; Nanotechnology ; 应用 ; 无机纳米材料 ; 材料合成 ; 纳米技术 ; 纳米颗粒 ; 结合位点 ; 自组装</subject><ispartof>Chinese journal of chemistry, 2016-03, Vol.34 (3), p.291-298</ispartof><rights>Copyright © 2016 SIOC, CAS, Shanghai &amp; WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2016 SIOC, CAS, Shanghai &amp; WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4925-a785f8d78cc0e135ca633839fd72191f4edca6bd8233c1f408c5fd2bb2b8c97b3</citedby><cites>FETCH-LOGICAL-c4925-a785f8d78cc0e135ca633839fd72191f4edca6bd8233c1f408c5fd2bb2b8c97b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84126X/84126X.jpg</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcjoc.201500835$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcjoc.201500835$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ma, Yurou</creatorcontrib><creatorcontrib>Yang, Xiangdong</creatorcontrib><creatorcontrib>Wei, Yurong</creatorcontrib><creatorcontrib>Yuan, Quan</creatorcontrib><title>Applications of DNA Nanotechnology in Synthesis and Assembly of Inorganic Nanomaterials</title><title>Chinese journal of chemistry</title><addtitle>Chinese Journal of Chemistry</addtitle><description>In addition to its inherited genetic function, DNA is one of the smartest and most flexible self-assembling na- nomaterials with programmable and predictable features, for which, more and more scientists combine DNA with nanomaterials and put them into designing, synthesizing and assembling. In this review, four modes of action of DNA molecules are introduced in a figurative and intuitive way, based on the four different roles it plays in synthe- sis and assembly of nanomaterials: (a) smart linkers to guide nanoparticle assembly, (b) 2D or 3D scaffold with well-designed binding sites, (c) nucleation sites to directly facilitate Au/Pd/Ag/Cu nanowires, nanoparticles, nano- arrays and (d) serving as capping agents to prevent crystal growth, and control size and morphology. To be sure, this state-of-the-art combination of functional DNA molecules and inorganic nanomaterials greatly encouraged step towards the development of analytical science, life science, environmental science, and other promising field they can address. DNA-guided nanofabrication will eventually exceed expectations far beyond our scope in the near fu- ture.</description><subject>assembly</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA nanotechnology</subject><subject>DNA origami</subject><subject>DNA分子</subject><subject>inorganic nanomaterial</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>应用</subject><subject>无机纳米材料</subject><subject>材料合成</subject><subject>纳米技术</subject><subject>纳米颗粒</subject><subject>结合位点</subject><subject>自组装</subject><issn>1001-604X</issn><issn>1614-7065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkEtP6zAQRiMEEs8t6wg2bNLrR_zIshToBaqyAARiYzmO07qkdmun4ubfX5eiCrFhNePROZ7RlySnEPQgAOiPmjnVQwASADgmO8kBpDDPGKBkN_YAwIyC_HU_OQxhFnnGED1IXvqLRWOUbI2zIXV1ejXup2NpXavV1LrGTbrU2PSxs-1UBxNSaau0H4Kel0235m-t8xNpjfq05rLV3sgmHCd7dSz65KseJc8310-Dv9noYXg76I8ylReIZJJxUvOKcaWAhpgoSTHmuKgrhmAB61xXcVRWHGGs4hNwReoKlSUquSpYiY-Si82_C--WKx1aMTdB6aaRVrtVEDAuQBjmNI_o-Q905lbexusixXIGKSUkUr0NpbwLwetaLLyZS98JCMQ6Z7HOWWxzjkKxET5Mo7tfaDG4exh8d7ONa0Kr_21d6d8FZZgR8TIeivvL1yEev43EfeTPvo6bOjtZGjvZOpRyQhEBBf4PWbacVg</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Ma, Yurou</creator><creator>Yang, Xiangdong</creator><creator>Wei, Yurong</creator><creator>Yuan, Quan</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope></search><sort><creationdate>201603</creationdate><title>Applications of DNA Nanotechnology in Synthesis and Assembly of Inorganic Nanomaterials</title><author>Ma, Yurou ; Yang, Xiangdong ; Wei, Yurong ; Yuan, Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4925-a785f8d78cc0e135ca633839fd72191f4edca6bd8233c1f408c5fd2bb2b8c97b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>assembly</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA nanotechnology</topic><topic>DNA origami</topic><topic>DNA分子</topic><topic>inorganic nanomaterial</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>应用</topic><topic>无机纳米材料</topic><topic>材料合成</topic><topic>纳米技术</topic><topic>纳米颗粒</topic><topic>结合位点</topic><topic>自组装</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Yurou</creatorcontrib><creatorcontrib>Yang, Xiangdong</creatorcontrib><creatorcontrib>Wei, Yurong</creatorcontrib><creatorcontrib>Yuan, Quan</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Istex</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Chinese journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Yurou</au><au>Yang, Xiangdong</au><au>Wei, Yurong</au><au>Yuan, Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applications of DNA Nanotechnology in Synthesis and Assembly of Inorganic Nanomaterials</atitle><jtitle>Chinese journal of chemistry</jtitle><addtitle>Chinese Journal of Chemistry</addtitle><date>2016-03</date><risdate>2016</risdate><volume>34</volume><issue>3</issue><spage>291</spage><epage>298</epage><pages>291-298</pages><issn>1001-604X</issn><eissn>1614-7065</eissn><abstract>In addition to its inherited genetic function, DNA is one of the smartest and most flexible self-assembling na- nomaterials with programmable and predictable features, for which, more and more scientists combine DNA with nanomaterials and put them into designing, synthesizing and assembling. In this review, four modes of action of DNA molecules are introduced in a figurative and intuitive way, based on the four different roles it plays in synthe- sis and assembly of nanomaterials: (a) smart linkers to guide nanoparticle assembly, (b) 2D or 3D scaffold with well-designed binding sites, (c) nucleation sites to directly facilitate Au/Pd/Ag/Cu nanowires, nanoparticles, nano- arrays and (d) serving as capping agents to prevent crystal growth, and control size and morphology. To be sure, this state-of-the-art combination of functional DNA molecules and inorganic nanomaterials greatly encouraged step towards the development of analytical science, life science, environmental science, and other promising field they can address. DNA-guided nanofabrication will eventually exceed expectations far beyond our scope in the near fu- ture.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/cjoc.201500835</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1001-604X
ispartof Chinese journal of chemistry, 2016-03, Vol.34 (3), p.291-298
issn 1001-604X
1614-7065
language eng
recordid cdi_proquest_miscellaneous_1785231464
source Wiley Journals
subjects assembly
Deoxyribonucleic acid
DNA
DNA nanotechnology
DNA origami
DNA分子
inorganic nanomaterial
Nanomaterials
Nanotechnology
应用
无机纳米材料
材料合成
纳米技术
纳米颗粒
结合位点
自组装
title Applications of DNA Nanotechnology in Synthesis and Assembly of Inorganic Nanomaterials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A17%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applications%20of%20DNA%20Nanotechnology%20in%20Synthesis%20and%20Assembly%20of%20Inorganic%20Nanomaterials&rft.jtitle=Chinese%20journal%20of%20chemistry&rft.au=Ma,%20Yurou&rft.date=2016-03&rft.volume=34&rft.issue=3&rft.spage=291&rft.epage=298&rft.pages=291-298&rft.issn=1001-604X&rft.eissn=1614-7065&rft_id=info:doi/10.1002/cjoc.201500835&rft_dat=%3Cproquest_cross%3E1785231464%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1774716655&rft_id=info:pmid/&rft_cqvip_id=668562509&rfr_iscdi=true