Applications of DNA Nanotechnology in Synthesis and Assembly of Inorganic Nanomaterials
In addition to its inherited genetic function, DNA is one of the smartest and most flexible self-assembling na- nomaterials with programmable and predictable features, for which, more and more scientists combine DNA with nanomaterials and put them into designing, synthesizing and assembling. In this...
Gespeichert in:
Veröffentlicht in: | Chinese journal of chemistry 2016-03, Vol.34 (3), p.291-298 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 298 |
---|---|
container_issue | 3 |
container_start_page | 291 |
container_title | Chinese journal of chemistry |
container_volume | 34 |
creator | Ma, Yurou Yang, Xiangdong Wei, Yurong Yuan, Quan |
description | In addition to its inherited genetic function, DNA is one of the smartest and most flexible self-assembling na- nomaterials with programmable and predictable features, for which, more and more scientists combine DNA with nanomaterials and put them into designing, synthesizing and assembling. In this review, four modes of action of DNA molecules are introduced in a figurative and intuitive way, based on the four different roles it plays in synthe- sis and assembly of nanomaterials: (a) smart linkers to guide nanoparticle assembly, (b) 2D or 3D scaffold with well-designed binding sites, (c) nucleation sites to directly facilitate Au/Pd/Ag/Cu nanowires, nanoparticles, nano- arrays and (d) serving as capping agents to prevent crystal growth, and control size and morphology. To be sure, this state-of-the-art combination of functional DNA molecules and inorganic nanomaterials greatly encouraged step towards the development of analytical science, life science, environmental science, and other promising field they can address. DNA-guided nanofabrication will eventually exceed expectations far beyond our scope in the near fu- ture. |
doi_str_mv | 10.1002/cjoc.201500835 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1785231464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>668562509</cqvip_id><sourcerecordid>1785231464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4925-a785f8d78cc0e135ca633839fd72191f4edca6bd8233c1f408c5fd2bb2b8c97b3</originalsourceid><addsrcrecordid>eNqFkEtP6zAQRiMEEs8t6wg2bNLrR_zIshToBaqyAARiYzmO07qkdmun4ubfX5eiCrFhNePROZ7RlySnEPQgAOiPmjnVQwASADgmO8kBpDDPGKBkN_YAwIyC_HU_OQxhFnnGED1IXvqLRWOUbI2zIXV1ejXup2NpXavV1LrGTbrU2PSxs-1UBxNSaau0H4Kel0235m-t8xNpjfq05rLV3sgmHCd7dSz65KseJc8310-Dv9noYXg76I8ylReIZJJxUvOKcaWAhpgoSTHmuKgrhmAB61xXcVRWHGGs4hNwReoKlSUquSpYiY-Si82_C--WKx1aMTdB6aaRVrtVEDAuQBjmNI_o-Q905lbexusixXIGKSUkUr0NpbwLwetaLLyZS98JCMQ6Z7HOWWxzjkKxET5Mo7tfaDG4exh8d7ONa0Kr_21d6d8FZZgR8TIeivvL1yEev43EfeTPvo6bOjtZGjvZOpRyQhEBBf4PWbacVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1774716655</pqid></control><display><type>article</type><title>Applications of DNA Nanotechnology in Synthesis and Assembly of Inorganic Nanomaterials</title><source>Wiley Journals</source><creator>Ma, Yurou ; Yang, Xiangdong ; Wei, Yurong ; Yuan, Quan</creator><creatorcontrib>Ma, Yurou ; Yang, Xiangdong ; Wei, Yurong ; Yuan, Quan</creatorcontrib><description>In addition to its inherited genetic function, DNA is one of the smartest and most flexible self-assembling na- nomaterials with programmable and predictable features, for which, more and more scientists combine DNA with nanomaterials and put them into designing, synthesizing and assembling. In this review, four modes of action of DNA molecules are introduced in a figurative and intuitive way, based on the four different roles it plays in synthe- sis and assembly of nanomaterials: (a) smart linkers to guide nanoparticle assembly, (b) 2D or 3D scaffold with well-designed binding sites, (c) nucleation sites to directly facilitate Au/Pd/Ag/Cu nanowires, nanoparticles, nano- arrays and (d) serving as capping agents to prevent crystal growth, and control size and morphology. To be sure, this state-of-the-art combination of functional DNA molecules and inorganic nanomaterials greatly encouraged step towards the development of analytical science, life science, environmental science, and other promising field they can address. DNA-guided nanofabrication will eventually exceed expectations far beyond our scope in the near fu- ture.</description><identifier>ISSN: 1001-604X</identifier><identifier>EISSN: 1614-7065</identifier><identifier>DOI: 10.1002/cjoc.201500835</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>assembly ; Deoxyribonucleic acid ; DNA ; DNA nanotechnology ; DNA origami ; DNA分子 ; inorganic nanomaterial ; Nanomaterials ; Nanotechnology ; 应用 ; 无机纳米材料 ; 材料合成 ; 纳米技术 ; 纳米颗粒 ; 结合位点 ; 自组装</subject><ispartof>Chinese journal of chemistry, 2016-03, Vol.34 (3), p.291-298</ispartof><rights>Copyright © 2016 SIOC, CAS, Shanghai & WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2016 SIOC, CAS, Shanghai & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4925-a785f8d78cc0e135ca633839fd72191f4edca6bd8233c1f408c5fd2bb2b8c97b3</citedby><cites>FETCH-LOGICAL-c4925-a785f8d78cc0e135ca633839fd72191f4edca6bd8233c1f408c5fd2bb2b8c97b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84126X/84126X.jpg</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcjoc.201500835$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcjoc.201500835$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ma, Yurou</creatorcontrib><creatorcontrib>Yang, Xiangdong</creatorcontrib><creatorcontrib>Wei, Yurong</creatorcontrib><creatorcontrib>Yuan, Quan</creatorcontrib><title>Applications of DNA Nanotechnology in Synthesis and Assembly of Inorganic Nanomaterials</title><title>Chinese journal of chemistry</title><addtitle>Chinese Journal of Chemistry</addtitle><description>In addition to its inherited genetic function, DNA is one of the smartest and most flexible self-assembling na- nomaterials with programmable and predictable features, for which, more and more scientists combine DNA with nanomaterials and put them into designing, synthesizing and assembling. In this review, four modes of action of DNA molecules are introduced in a figurative and intuitive way, based on the four different roles it plays in synthe- sis and assembly of nanomaterials: (a) smart linkers to guide nanoparticle assembly, (b) 2D or 3D scaffold with well-designed binding sites, (c) nucleation sites to directly facilitate Au/Pd/Ag/Cu nanowires, nanoparticles, nano- arrays and (d) serving as capping agents to prevent crystal growth, and control size and morphology. To be sure, this state-of-the-art combination of functional DNA molecules and inorganic nanomaterials greatly encouraged step towards the development of analytical science, life science, environmental science, and other promising field they can address. DNA-guided nanofabrication will eventually exceed expectations far beyond our scope in the near fu- ture.</description><subject>assembly</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA nanotechnology</subject><subject>DNA origami</subject><subject>DNA分子</subject><subject>inorganic nanomaterial</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>应用</subject><subject>无机纳米材料</subject><subject>材料合成</subject><subject>纳米技术</subject><subject>纳米颗粒</subject><subject>结合位点</subject><subject>自组装</subject><issn>1001-604X</issn><issn>1614-7065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkEtP6zAQRiMEEs8t6wg2bNLrR_zIshToBaqyAARiYzmO07qkdmun4ubfX5eiCrFhNePROZ7RlySnEPQgAOiPmjnVQwASADgmO8kBpDDPGKBkN_YAwIyC_HU_OQxhFnnGED1IXvqLRWOUbI2zIXV1ejXup2NpXavV1LrGTbrU2PSxs-1UBxNSaau0H4Kel0235m-t8xNpjfq05rLV3sgmHCd7dSz65KseJc8310-Dv9noYXg76I8ylReIZJJxUvOKcaWAhpgoSTHmuKgrhmAB61xXcVRWHGGs4hNwReoKlSUquSpYiY-Si82_C--WKx1aMTdB6aaRVrtVEDAuQBjmNI_o-Q905lbexusixXIGKSUkUr0NpbwLwetaLLyZS98JCMQ6Z7HOWWxzjkKxET5Mo7tfaDG4exh8d7ONa0Kr_21d6d8FZZgR8TIeivvL1yEev43EfeTPvo6bOjtZGjvZOpRyQhEBBf4PWbacVg</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Ma, Yurou</creator><creator>Yang, Xiangdong</creator><creator>Wei, Yurong</creator><creator>Yuan, Quan</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope></search><sort><creationdate>201603</creationdate><title>Applications of DNA Nanotechnology in Synthesis and Assembly of Inorganic Nanomaterials</title><author>Ma, Yurou ; Yang, Xiangdong ; Wei, Yurong ; Yuan, Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4925-a785f8d78cc0e135ca633839fd72191f4edca6bd8233c1f408c5fd2bb2b8c97b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>assembly</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA nanotechnology</topic><topic>DNA origami</topic><topic>DNA分子</topic><topic>inorganic nanomaterial</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>应用</topic><topic>无机纳米材料</topic><topic>材料合成</topic><topic>纳米技术</topic><topic>纳米颗粒</topic><topic>结合位点</topic><topic>自组装</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Yurou</creatorcontrib><creatorcontrib>Yang, Xiangdong</creatorcontrib><creatorcontrib>Wei, Yurong</creatorcontrib><creatorcontrib>Yuan, Quan</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Istex</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Chinese journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Yurou</au><au>Yang, Xiangdong</au><au>Wei, Yurong</au><au>Yuan, Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applications of DNA Nanotechnology in Synthesis and Assembly of Inorganic Nanomaterials</atitle><jtitle>Chinese journal of chemistry</jtitle><addtitle>Chinese Journal of Chemistry</addtitle><date>2016-03</date><risdate>2016</risdate><volume>34</volume><issue>3</issue><spage>291</spage><epage>298</epage><pages>291-298</pages><issn>1001-604X</issn><eissn>1614-7065</eissn><abstract>In addition to its inherited genetic function, DNA is one of the smartest and most flexible self-assembling na- nomaterials with programmable and predictable features, for which, more and more scientists combine DNA with nanomaterials and put them into designing, synthesizing and assembling. In this review, four modes of action of DNA molecules are introduced in a figurative and intuitive way, based on the four different roles it plays in synthe- sis and assembly of nanomaterials: (a) smart linkers to guide nanoparticle assembly, (b) 2D or 3D scaffold with well-designed binding sites, (c) nucleation sites to directly facilitate Au/Pd/Ag/Cu nanowires, nanoparticles, nano- arrays and (d) serving as capping agents to prevent crystal growth, and control size and morphology. To be sure, this state-of-the-art combination of functional DNA molecules and inorganic nanomaterials greatly encouraged step towards the development of analytical science, life science, environmental science, and other promising field they can address. DNA-guided nanofabrication will eventually exceed expectations far beyond our scope in the near fu- ture.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/cjoc.201500835</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-604X |
ispartof | Chinese journal of chemistry, 2016-03, Vol.34 (3), p.291-298 |
issn | 1001-604X 1614-7065 |
language | eng |
recordid | cdi_proquest_miscellaneous_1785231464 |
source | Wiley Journals |
subjects | assembly Deoxyribonucleic acid DNA DNA nanotechnology DNA origami DNA分子 inorganic nanomaterial Nanomaterials Nanotechnology 应用 无机纳米材料 材料合成 纳米技术 纳米颗粒 结合位点 自组装 |
title | Applications of DNA Nanotechnology in Synthesis and Assembly of Inorganic Nanomaterials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A17%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applications%20of%20DNA%20Nanotechnology%20in%20Synthesis%20and%20Assembly%20of%20Inorganic%20Nanomaterials&rft.jtitle=Chinese%20journal%20of%20chemistry&rft.au=Ma,%20Yurou&rft.date=2016-03&rft.volume=34&rft.issue=3&rft.spage=291&rft.epage=298&rft.pages=291-298&rft.issn=1001-604X&rft.eissn=1614-7065&rft_id=info:doi/10.1002/cjoc.201500835&rft_dat=%3Cproquest_cross%3E1785231464%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1774716655&rft_id=info:pmid/&rft_cqvip_id=668562509&rfr_iscdi=true |