Salmonella Pathogenicity Island 2-Encoded Type III Secretion System Mediates Exclusion of NADPH Oxidase Assembly from the Phagosomal Membrane
Salmonella typhimurium requires a type III secretion system encoded by pathogenicity island (SPI)-2 to survive and proliferate within macrophages. This survival implies that S. typhimurium avoids or withstands bactericidal events targeted to the microbe-containing vacuole, which include intraphagoso...
Gespeichert in:
Veröffentlicht in: | The Journal of immunology (1950) 2001-05, Vol.166 (9), p.5741-5748 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5748 |
---|---|
container_issue | 9 |
container_start_page | 5741 |
container_title | The Journal of immunology (1950) |
container_volume | 166 |
creator | Gallois, Annabelle Klein, Joanna R Allen, Lee-Ann H Jones, Bradley D Nauseef, William M |
description | Salmonella typhimurium requires a type III secretion system encoded by pathogenicity island (SPI)-2 to survive and proliferate within macrophages. This survival implies that S. typhimurium avoids or withstands bactericidal events targeted to the microbe-containing vacuole, which include intraphagosomal production of reactive oxygen species (ROS), phagosomal acidification, and delivery of hydrolytic enzymes to the phagosome via fusion with lysosomes. Recent evidence suggests that S. typhimurium alters ROS production by murine macrophages in an SPI-2-dependent manner. To gain insights into the mechanism by which S. typhimurium inhibits intraphagosomal ROS production, we analyzed the subcellular distribution of NADPH oxidase components during infection of human monocyte-derived macrophages by wild-type (WT) or several SPI-2 mutant strains of S. typhimurium. We found that the membrane component of the NADPH oxidase, flavocytochrome b(558), was actively excluded or rapidly removed from the phagosomal membrane of WT-infected monocyte-derived macrophages, thereby preventing assembly of the NADPH oxidase complex and intraphagosomal production of superoxide anion. In contrast, the NADPH oxidase assembled on and generated ROS in phagosomes containing SPI-2 mutant S. typhimurium. Subversion of NADPH oxidase assembly by S. typhimurium was accompanied by increased bacterial replication relative to that of SPI-2 mutant strains, suggesting that the ability of WT S. typhimurium to prevent NADPH oxidase assembly at the phagosomal membrane represents an important virulence factor influencing its intracellular survival. |
doi_str_mv | 10.4049/jimmunol.166.9.5741 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17843854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17843854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-6c8ba8c232577f3ef8a47da48d7a67969dec575ce7cdb930be528308002488da3</originalsourceid><addsrcrecordid>eNpNkcGO0zAURS0EYsrAFyAhr2CVYieO7SyrocxEGphKHdaWY780HtlxiVN18hH886RqEaze4p17F-ci9JGSJSOs-vrkQjj00S8p58tqWQpGX6EFLUuScU74a7QgJM8zKri4Qu9SeiKEcJKzt-iK0oIWjIoF-rPVPsQevNd4o8cu7qB3xo0TrpPXvcV5tu5NtGDx47QHXNc13oIZYHSxx9spjRDwD7BOj5Dw-tn4Qzp9Yot_rr5t7vDDs7M6AV6lBKHxE26HGPDYAd50ehdTDNrPBaEZdA_v0ZtW-wQfLvca_fq-fry5y-4fbuub1X1mmCjHjBvZaGnyIi-FaAtopWbCaiat0FxUvLJgSlEaEMY2VUEaKHNZEDn7YFJaXVyjz-fe_RB_HyCNKrhkThJ6iIekqJCskCWbweIMmiGmNECr9oMLepgUJeq0gvq7gppXUJU6rTCnPl3qD00A-y9z0T4DX85A53bd0Q2g0qzBzzhVx-Pxv6oXX-KUhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17843854</pqid></control><display><type>article</type><title>Salmonella Pathogenicity Island 2-Encoded Type III Secretion System Mediates Exclusion of NADPH Oxidase Assembly from the Phagosomal Membrane</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Gallois, Annabelle ; Klein, Joanna R ; Allen, Lee-Ann H ; Jones, Bradley D ; Nauseef, William M</creator><creatorcontrib>Gallois, Annabelle ; Klein, Joanna R ; Allen, Lee-Ann H ; Jones, Bradley D ; Nauseef, William M</creatorcontrib><description>Salmonella typhimurium requires a type III secretion system encoded by pathogenicity island (SPI)-2 to survive and proliferate within macrophages. This survival implies that S. typhimurium avoids or withstands bactericidal events targeted to the microbe-containing vacuole, which include intraphagosomal production of reactive oxygen species (ROS), phagosomal acidification, and delivery of hydrolytic enzymes to the phagosome via fusion with lysosomes. Recent evidence suggests that S. typhimurium alters ROS production by murine macrophages in an SPI-2-dependent manner. To gain insights into the mechanism by which S. typhimurium inhibits intraphagosomal ROS production, we analyzed the subcellular distribution of NADPH oxidase components during infection of human monocyte-derived macrophages by wild-type (WT) or several SPI-2 mutant strains of S. typhimurium. We found that the membrane component of the NADPH oxidase, flavocytochrome b(558), was actively excluded or rapidly removed from the phagosomal membrane of WT-infected monocyte-derived macrophages, thereby preventing assembly of the NADPH oxidase complex and intraphagosomal production of superoxide anion. In contrast, the NADPH oxidase assembled on and generated ROS in phagosomes containing SPI-2 mutant S. typhimurium. Subversion of NADPH oxidase assembly by S. typhimurium was accompanied by increased bacterial replication relative to that of SPI-2 mutant strains, suggesting that the ability of WT S. typhimurium to prevent NADPH oxidase assembly at the phagosomal membrane represents an important virulence factor influencing its intracellular survival.</description><identifier>ISSN: 0022-1767</identifier><identifier>EISSN: 1550-6606</identifier><identifier>DOI: 10.4049/jimmunol.166.9.5741</identifier><identifier>PMID: 11313417</identifier><language>eng</language><publisher>United States: Am Assoc Immnol</publisher><subject>Adult ; Animals ; Cytochrome b Group - deficiency ; Cytochrome b Group - metabolism ; Female ; Humans ; Intracellular Membranes - enzymology ; Intracellular Membranes - metabolism ; Intracellular Membranes - microbiology ; Macrophages - enzymology ; Macrophages - metabolism ; Macrophages - microbiology ; Mice ; Mutagenesis ; NADPH oxidase ; NADPH Oxidases - antagonists & inhibitors ; NADPH Oxidases - metabolism ; Phagosomes - enzymology ; Phagosomes - genetics ; Phagosomes - metabolism ; Phagosomes - microbiology ; Phenotype ; Phosphoproteins - deficiency ; Phosphoproteins - metabolism ; Salmonella typhimurium ; Salmonella typhimurium - genetics ; Salmonella typhimurium - growth & development ; Salmonella typhimurium - pathogenicity ; Superoxides - metabolism</subject><ispartof>The Journal of immunology (1950), 2001-05, Vol.166 (9), p.5741-5748</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-6c8ba8c232577f3ef8a47da48d7a67969dec575ce7cdb930be528308002488da3</citedby><cites>FETCH-LOGICAL-c475t-6c8ba8c232577f3ef8a47da48d7a67969dec575ce7cdb930be528308002488da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11313417$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gallois, Annabelle</creatorcontrib><creatorcontrib>Klein, Joanna R</creatorcontrib><creatorcontrib>Allen, Lee-Ann H</creatorcontrib><creatorcontrib>Jones, Bradley D</creatorcontrib><creatorcontrib>Nauseef, William M</creatorcontrib><title>Salmonella Pathogenicity Island 2-Encoded Type III Secretion System Mediates Exclusion of NADPH Oxidase Assembly from the Phagosomal Membrane</title><title>The Journal of immunology (1950)</title><addtitle>J Immunol</addtitle><description>Salmonella typhimurium requires a type III secretion system encoded by pathogenicity island (SPI)-2 to survive and proliferate within macrophages. This survival implies that S. typhimurium avoids or withstands bactericidal events targeted to the microbe-containing vacuole, which include intraphagosomal production of reactive oxygen species (ROS), phagosomal acidification, and delivery of hydrolytic enzymes to the phagosome via fusion with lysosomes. Recent evidence suggests that S. typhimurium alters ROS production by murine macrophages in an SPI-2-dependent manner. To gain insights into the mechanism by which S. typhimurium inhibits intraphagosomal ROS production, we analyzed the subcellular distribution of NADPH oxidase components during infection of human monocyte-derived macrophages by wild-type (WT) or several SPI-2 mutant strains of S. typhimurium. We found that the membrane component of the NADPH oxidase, flavocytochrome b(558), was actively excluded or rapidly removed from the phagosomal membrane of WT-infected monocyte-derived macrophages, thereby preventing assembly of the NADPH oxidase complex and intraphagosomal production of superoxide anion. In contrast, the NADPH oxidase assembled on and generated ROS in phagosomes containing SPI-2 mutant S. typhimurium. Subversion of NADPH oxidase assembly by S. typhimurium was accompanied by increased bacterial replication relative to that of SPI-2 mutant strains, suggesting that the ability of WT S. typhimurium to prevent NADPH oxidase assembly at the phagosomal membrane represents an important virulence factor influencing its intracellular survival.</description><subject>Adult</subject><subject>Animals</subject><subject>Cytochrome b Group - deficiency</subject><subject>Cytochrome b Group - metabolism</subject><subject>Female</subject><subject>Humans</subject><subject>Intracellular Membranes - enzymology</subject><subject>Intracellular Membranes - metabolism</subject><subject>Intracellular Membranes - microbiology</subject><subject>Macrophages - enzymology</subject><subject>Macrophages - metabolism</subject><subject>Macrophages - microbiology</subject><subject>Mice</subject><subject>Mutagenesis</subject><subject>NADPH oxidase</subject><subject>NADPH Oxidases - antagonists & inhibitors</subject><subject>NADPH Oxidases - metabolism</subject><subject>Phagosomes - enzymology</subject><subject>Phagosomes - genetics</subject><subject>Phagosomes - metabolism</subject><subject>Phagosomes - microbiology</subject><subject>Phenotype</subject><subject>Phosphoproteins - deficiency</subject><subject>Phosphoproteins - metabolism</subject><subject>Salmonella typhimurium</subject><subject>Salmonella typhimurium - genetics</subject><subject>Salmonella typhimurium - growth & development</subject><subject>Salmonella typhimurium - pathogenicity</subject><subject>Superoxides - metabolism</subject><issn>0022-1767</issn><issn>1550-6606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkcGO0zAURS0EYsrAFyAhr2CVYieO7SyrocxEGphKHdaWY780HtlxiVN18hH886RqEaze4p17F-ci9JGSJSOs-vrkQjj00S8p58tqWQpGX6EFLUuScU74a7QgJM8zKri4Qu9SeiKEcJKzt-iK0oIWjIoF-rPVPsQevNd4o8cu7qB3xo0TrpPXvcV5tu5NtGDx47QHXNc13oIZYHSxx9spjRDwD7BOj5Dw-tn4Qzp9Yot_rr5t7vDDs7M6AV6lBKHxE26HGPDYAd50ehdTDNrPBaEZdA_v0ZtW-wQfLvca_fq-fry5y-4fbuub1X1mmCjHjBvZaGnyIi-FaAtopWbCaiat0FxUvLJgSlEaEMY2VUEaKHNZEDn7YFJaXVyjz-fe_RB_HyCNKrhkThJ6iIekqJCskCWbweIMmiGmNECr9oMLepgUJeq0gvq7gppXUJU6rTCnPl3qD00A-y9z0T4DX85A53bd0Q2g0qzBzzhVx-Pxv6oXX-KUhQ</recordid><startdate>20010501</startdate><enddate>20010501</enddate><creator>Gallois, Annabelle</creator><creator>Klein, Joanna R</creator><creator>Allen, Lee-Ann H</creator><creator>Jones, Bradley D</creator><creator>Nauseef, William M</creator><general>Am Assoc Immnol</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>C1K</scope><scope>H94</scope></search><sort><creationdate>20010501</creationdate><title>Salmonella Pathogenicity Island 2-Encoded Type III Secretion System Mediates Exclusion of NADPH Oxidase Assembly from the Phagosomal Membrane</title><author>Gallois, Annabelle ; Klein, Joanna R ; Allen, Lee-Ann H ; Jones, Bradley D ; Nauseef, William M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-6c8ba8c232577f3ef8a47da48d7a67969dec575ce7cdb930be528308002488da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adult</topic><topic>Animals</topic><topic>Cytochrome b Group - deficiency</topic><topic>Cytochrome b Group - metabolism</topic><topic>Female</topic><topic>Humans</topic><topic>Intracellular Membranes - enzymology</topic><topic>Intracellular Membranes - metabolism</topic><topic>Intracellular Membranes - microbiology</topic><topic>Macrophages - enzymology</topic><topic>Macrophages - metabolism</topic><topic>Macrophages - microbiology</topic><topic>Mice</topic><topic>Mutagenesis</topic><topic>NADPH oxidase</topic><topic>NADPH Oxidases - antagonists & inhibitors</topic><topic>NADPH Oxidases - metabolism</topic><topic>Phagosomes - enzymology</topic><topic>Phagosomes - genetics</topic><topic>Phagosomes - metabolism</topic><topic>Phagosomes - microbiology</topic><topic>Phenotype</topic><topic>Phosphoproteins - deficiency</topic><topic>Phosphoproteins - metabolism</topic><topic>Salmonella typhimurium</topic><topic>Salmonella typhimurium - genetics</topic><topic>Salmonella typhimurium - growth & development</topic><topic>Salmonella typhimurium - pathogenicity</topic><topic>Superoxides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallois, Annabelle</creatorcontrib><creatorcontrib>Klein, Joanna R</creatorcontrib><creatorcontrib>Allen, Lee-Ann H</creatorcontrib><creatorcontrib>Jones, Bradley D</creatorcontrib><creatorcontrib>Nauseef, William M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>The Journal of immunology (1950)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallois, Annabelle</au><au>Klein, Joanna R</au><au>Allen, Lee-Ann H</au><au>Jones, Bradley D</au><au>Nauseef, William M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Salmonella Pathogenicity Island 2-Encoded Type III Secretion System Mediates Exclusion of NADPH Oxidase Assembly from the Phagosomal Membrane</atitle><jtitle>The Journal of immunology (1950)</jtitle><addtitle>J Immunol</addtitle><date>2001-05-01</date><risdate>2001</risdate><volume>166</volume><issue>9</issue><spage>5741</spage><epage>5748</epage><pages>5741-5748</pages><issn>0022-1767</issn><eissn>1550-6606</eissn><abstract>Salmonella typhimurium requires a type III secretion system encoded by pathogenicity island (SPI)-2 to survive and proliferate within macrophages. This survival implies that S. typhimurium avoids or withstands bactericidal events targeted to the microbe-containing vacuole, which include intraphagosomal production of reactive oxygen species (ROS), phagosomal acidification, and delivery of hydrolytic enzymes to the phagosome via fusion with lysosomes. Recent evidence suggests that S. typhimurium alters ROS production by murine macrophages in an SPI-2-dependent manner. To gain insights into the mechanism by which S. typhimurium inhibits intraphagosomal ROS production, we analyzed the subcellular distribution of NADPH oxidase components during infection of human monocyte-derived macrophages by wild-type (WT) or several SPI-2 mutant strains of S. typhimurium. We found that the membrane component of the NADPH oxidase, flavocytochrome b(558), was actively excluded or rapidly removed from the phagosomal membrane of WT-infected monocyte-derived macrophages, thereby preventing assembly of the NADPH oxidase complex and intraphagosomal production of superoxide anion. In contrast, the NADPH oxidase assembled on and generated ROS in phagosomes containing SPI-2 mutant S. typhimurium. Subversion of NADPH oxidase assembly by S. typhimurium was accompanied by increased bacterial replication relative to that of SPI-2 mutant strains, suggesting that the ability of WT S. typhimurium to prevent NADPH oxidase assembly at the phagosomal membrane represents an important virulence factor influencing its intracellular survival.</abstract><cop>United States</cop><pub>Am Assoc Immnol</pub><pmid>11313417</pmid><doi>10.4049/jimmunol.166.9.5741</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1767 |
ispartof | The Journal of immunology (1950), 2001-05, Vol.166 (9), p.5741-5748 |
issn | 0022-1767 1550-6606 |
language | eng |
recordid | cdi_proquest_miscellaneous_17843854 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Adult Animals Cytochrome b Group - deficiency Cytochrome b Group - metabolism Female Humans Intracellular Membranes - enzymology Intracellular Membranes - metabolism Intracellular Membranes - microbiology Macrophages - enzymology Macrophages - metabolism Macrophages - microbiology Mice Mutagenesis NADPH oxidase NADPH Oxidases - antagonists & inhibitors NADPH Oxidases - metabolism Phagosomes - enzymology Phagosomes - genetics Phagosomes - metabolism Phagosomes - microbiology Phenotype Phosphoproteins - deficiency Phosphoproteins - metabolism Salmonella typhimurium Salmonella typhimurium - genetics Salmonella typhimurium - growth & development Salmonella typhimurium - pathogenicity Superoxides - metabolism |
title | Salmonella Pathogenicity Island 2-Encoded Type III Secretion System Mediates Exclusion of NADPH Oxidase Assembly from the Phagosomal Membrane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Salmonella%20Pathogenicity%20Island%202-Encoded%20Type%20III%20Secretion%20System%20Mediates%20Exclusion%20of%20NADPH%20Oxidase%20Assembly%20from%20the%20Phagosomal%20Membrane&rft.jtitle=The%20Journal%20of%20immunology%20(1950)&rft.au=Gallois,%20Annabelle&rft.date=2001-05-01&rft.volume=166&rft.issue=9&rft.spage=5741&rft.epage=5748&rft.pages=5741-5748&rft.issn=0022-1767&rft.eissn=1550-6606&rft_id=info:doi/10.4049/jimmunol.166.9.5741&rft_dat=%3Cproquest_cross%3E17843854%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17843854&rft_id=info:pmid/11313417&rfr_iscdi=true |