Salmonella Pathogenicity Island 2-Encoded Type III Secretion System Mediates Exclusion of NADPH Oxidase Assembly from the Phagosomal Membrane

Salmonella typhimurium requires a type III secretion system encoded by pathogenicity island (SPI)-2 to survive and proliferate within macrophages. This survival implies that S. typhimurium avoids or withstands bactericidal events targeted to the microbe-containing vacuole, which include intraphagoso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2001-05, Vol.166 (9), p.5741-5748
Hauptverfasser: Gallois, Annabelle, Klein, Joanna R, Allen, Lee-Ann H, Jones, Bradley D, Nauseef, William M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5748
container_issue 9
container_start_page 5741
container_title The Journal of immunology (1950)
container_volume 166
creator Gallois, Annabelle
Klein, Joanna R
Allen, Lee-Ann H
Jones, Bradley D
Nauseef, William M
description Salmonella typhimurium requires a type III secretion system encoded by pathogenicity island (SPI)-2 to survive and proliferate within macrophages. This survival implies that S. typhimurium avoids or withstands bactericidal events targeted to the microbe-containing vacuole, which include intraphagosomal production of reactive oxygen species (ROS), phagosomal acidification, and delivery of hydrolytic enzymes to the phagosome via fusion with lysosomes. Recent evidence suggests that S. typhimurium alters ROS production by murine macrophages in an SPI-2-dependent manner. To gain insights into the mechanism by which S. typhimurium inhibits intraphagosomal ROS production, we analyzed the subcellular distribution of NADPH oxidase components during infection of human monocyte-derived macrophages by wild-type (WT) or several SPI-2 mutant strains of S. typhimurium. We found that the membrane component of the NADPH oxidase, flavocytochrome b(558), was actively excluded or rapidly removed from the phagosomal membrane of WT-infected monocyte-derived macrophages, thereby preventing assembly of the NADPH oxidase complex and intraphagosomal production of superoxide anion. In contrast, the NADPH oxidase assembled on and generated ROS in phagosomes containing SPI-2 mutant S. typhimurium. Subversion of NADPH oxidase assembly by S. typhimurium was accompanied by increased bacterial replication relative to that of SPI-2 mutant strains, suggesting that the ability of WT S. typhimurium to prevent NADPH oxidase assembly at the phagosomal membrane represents an important virulence factor influencing its intracellular survival.
doi_str_mv 10.4049/jimmunol.166.9.5741
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17843854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17843854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-6c8ba8c232577f3ef8a47da48d7a67969dec575ce7cdb930be528308002488da3</originalsourceid><addsrcrecordid>eNpNkcGO0zAURS0EYsrAFyAhr2CVYieO7SyrocxEGphKHdaWY780HtlxiVN18hH886RqEaze4p17F-ci9JGSJSOs-vrkQjj00S8p58tqWQpGX6EFLUuScU74a7QgJM8zKri4Qu9SeiKEcJKzt-iK0oIWjIoF-rPVPsQevNd4o8cu7qB3xo0TrpPXvcV5tu5NtGDx47QHXNc13oIZYHSxx9spjRDwD7BOj5Dw-tn4Qzp9Yot_rr5t7vDDs7M6AV6lBKHxE26HGPDYAd50ehdTDNrPBaEZdA_v0ZtW-wQfLvca_fq-fry5y-4fbuub1X1mmCjHjBvZaGnyIi-FaAtopWbCaiat0FxUvLJgSlEaEMY2VUEaKHNZEDn7YFJaXVyjz-fe_RB_HyCNKrhkThJ6iIekqJCskCWbweIMmiGmNECr9oMLepgUJeq0gvq7gppXUJU6rTCnPl3qD00A-y9z0T4DX85A53bd0Q2g0qzBzzhVx-Pxv6oXX-KUhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17843854</pqid></control><display><type>article</type><title>Salmonella Pathogenicity Island 2-Encoded Type III Secretion System Mediates Exclusion of NADPH Oxidase Assembly from the Phagosomal Membrane</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Gallois, Annabelle ; Klein, Joanna R ; Allen, Lee-Ann H ; Jones, Bradley D ; Nauseef, William M</creator><creatorcontrib>Gallois, Annabelle ; Klein, Joanna R ; Allen, Lee-Ann H ; Jones, Bradley D ; Nauseef, William M</creatorcontrib><description>Salmonella typhimurium requires a type III secretion system encoded by pathogenicity island (SPI)-2 to survive and proliferate within macrophages. This survival implies that S. typhimurium avoids or withstands bactericidal events targeted to the microbe-containing vacuole, which include intraphagosomal production of reactive oxygen species (ROS), phagosomal acidification, and delivery of hydrolytic enzymes to the phagosome via fusion with lysosomes. Recent evidence suggests that S. typhimurium alters ROS production by murine macrophages in an SPI-2-dependent manner. To gain insights into the mechanism by which S. typhimurium inhibits intraphagosomal ROS production, we analyzed the subcellular distribution of NADPH oxidase components during infection of human monocyte-derived macrophages by wild-type (WT) or several SPI-2 mutant strains of S. typhimurium. We found that the membrane component of the NADPH oxidase, flavocytochrome b(558), was actively excluded or rapidly removed from the phagosomal membrane of WT-infected monocyte-derived macrophages, thereby preventing assembly of the NADPH oxidase complex and intraphagosomal production of superoxide anion. In contrast, the NADPH oxidase assembled on and generated ROS in phagosomes containing SPI-2 mutant S. typhimurium. Subversion of NADPH oxidase assembly by S. typhimurium was accompanied by increased bacterial replication relative to that of SPI-2 mutant strains, suggesting that the ability of WT S. typhimurium to prevent NADPH oxidase assembly at the phagosomal membrane represents an important virulence factor influencing its intracellular survival.</description><identifier>ISSN: 0022-1767</identifier><identifier>EISSN: 1550-6606</identifier><identifier>DOI: 10.4049/jimmunol.166.9.5741</identifier><identifier>PMID: 11313417</identifier><language>eng</language><publisher>United States: Am Assoc Immnol</publisher><subject>Adult ; Animals ; Cytochrome b Group - deficiency ; Cytochrome b Group - metabolism ; Female ; Humans ; Intracellular Membranes - enzymology ; Intracellular Membranes - metabolism ; Intracellular Membranes - microbiology ; Macrophages - enzymology ; Macrophages - metabolism ; Macrophages - microbiology ; Mice ; Mutagenesis ; NADPH oxidase ; NADPH Oxidases - antagonists &amp; inhibitors ; NADPH Oxidases - metabolism ; Phagosomes - enzymology ; Phagosomes - genetics ; Phagosomes - metabolism ; Phagosomes - microbiology ; Phenotype ; Phosphoproteins - deficiency ; Phosphoproteins - metabolism ; Salmonella typhimurium ; Salmonella typhimurium - genetics ; Salmonella typhimurium - growth &amp; development ; Salmonella typhimurium - pathogenicity ; Superoxides - metabolism</subject><ispartof>The Journal of immunology (1950), 2001-05, Vol.166 (9), p.5741-5748</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-6c8ba8c232577f3ef8a47da48d7a67969dec575ce7cdb930be528308002488da3</citedby><cites>FETCH-LOGICAL-c475t-6c8ba8c232577f3ef8a47da48d7a67969dec575ce7cdb930be528308002488da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11313417$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gallois, Annabelle</creatorcontrib><creatorcontrib>Klein, Joanna R</creatorcontrib><creatorcontrib>Allen, Lee-Ann H</creatorcontrib><creatorcontrib>Jones, Bradley D</creatorcontrib><creatorcontrib>Nauseef, William M</creatorcontrib><title>Salmonella Pathogenicity Island 2-Encoded Type III Secretion System Mediates Exclusion of NADPH Oxidase Assembly from the Phagosomal Membrane</title><title>The Journal of immunology (1950)</title><addtitle>J Immunol</addtitle><description>Salmonella typhimurium requires a type III secretion system encoded by pathogenicity island (SPI)-2 to survive and proliferate within macrophages. This survival implies that S. typhimurium avoids or withstands bactericidal events targeted to the microbe-containing vacuole, which include intraphagosomal production of reactive oxygen species (ROS), phagosomal acidification, and delivery of hydrolytic enzymes to the phagosome via fusion with lysosomes. Recent evidence suggests that S. typhimurium alters ROS production by murine macrophages in an SPI-2-dependent manner. To gain insights into the mechanism by which S. typhimurium inhibits intraphagosomal ROS production, we analyzed the subcellular distribution of NADPH oxidase components during infection of human monocyte-derived macrophages by wild-type (WT) or several SPI-2 mutant strains of S. typhimurium. We found that the membrane component of the NADPH oxidase, flavocytochrome b(558), was actively excluded or rapidly removed from the phagosomal membrane of WT-infected monocyte-derived macrophages, thereby preventing assembly of the NADPH oxidase complex and intraphagosomal production of superoxide anion. In contrast, the NADPH oxidase assembled on and generated ROS in phagosomes containing SPI-2 mutant S. typhimurium. Subversion of NADPH oxidase assembly by S. typhimurium was accompanied by increased bacterial replication relative to that of SPI-2 mutant strains, suggesting that the ability of WT S. typhimurium to prevent NADPH oxidase assembly at the phagosomal membrane represents an important virulence factor influencing its intracellular survival.</description><subject>Adult</subject><subject>Animals</subject><subject>Cytochrome b Group - deficiency</subject><subject>Cytochrome b Group - metabolism</subject><subject>Female</subject><subject>Humans</subject><subject>Intracellular Membranes - enzymology</subject><subject>Intracellular Membranes - metabolism</subject><subject>Intracellular Membranes - microbiology</subject><subject>Macrophages - enzymology</subject><subject>Macrophages - metabolism</subject><subject>Macrophages - microbiology</subject><subject>Mice</subject><subject>Mutagenesis</subject><subject>NADPH oxidase</subject><subject>NADPH Oxidases - antagonists &amp; inhibitors</subject><subject>NADPH Oxidases - metabolism</subject><subject>Phagosomes - enzymology</subject><subject>Phagosomes - genetics</subject><subject>Phagosomes - metabolism</subject><subject>Phagosomes - microbiology</subject><subject>Phenotype</subject><subject>Phosphoproteins - deficiency</subject><subject>Phosphoproteins - metabolism</subject><subject>Salmonella typhimurium</subject><subject>Salmonella typhimurium - genetics</subject><subject>Salmonella typhimurium - growth &amp; development</subject><subject>Salmonella typhimurium - pathogenicity</subject><subject>Superoxides - metabolism</subject><issn>0022-1767</issn><issn>1550-6606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkcGO0zAURS0EYsrAFyAhr2CVYieO7SyrocxEGphKHdaWY780HtlxiVN18hH886RqEaze4p17F-ci9JGSJSOs-vrkQjj00S8p58tqWQpGX6EFLUuScU74a7QgJM8zKri4Qu9SeiKEcJKzt-iK0oIWjIoF-rPVPsQevNd4o8cu7qB3xo0TrpPXvcV5tu5NtGDx47QHXNc13oIZYHSxx9spjRDwD7BOj5Dw-tn4Qzp9Yot_rr5t7vDDs7M6AV6lBKHxE26HGPDYAd50ehdTDNrPBaEZdA_v0ZtW-wQfLvca_fq-fry5y-4fbuub1X1mmCjHjBvZaGnyIi-FaAtopWbCaiat0FxUvLJgSlEaEMY2VUEaKHNZEDn7YFJaXVyjz-fe_RB_HyCNKrhkThJ6iIekqJCskCWbweIMmiGmNECr9oMLepgUJeq0gvq7gppXUJU6rTCnPl3qD00A-y9z0T4DX85A53bd0Q2g0qzBzzhVx-Pxv6oXX-KUhQ</recordid><startdate>20010501</startdate><enddate>20010501</enddate><creator>Gallois, Annabelle</creator><creator>Klein, Joanna R</creator><creator>Allen, Lee-Ann H</creator><creator>Jones, Bradley D</creator><creator>Nauseef, William M</creator><general>Am Assoc Immnol</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T5</scope><scope>C1K</scope><scope>H94</scope></search><sort><creationdate>20010501</creationdate><title>Salmonella Pathogenicity Island 2-Encoded Type III Secretion System Mediates Exclusion of NADPH Oxidase Assembly from the Phagosomal Membrane</title><author>Gallois, Annabelle ; Klein, Joanna R ; Allen, Lee-Ann H ; Jones, Bradley D ; Nauseef, William M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-6c8ba8c232577f3ef8a47da48d7a67969dec575ce7cdb930be528308002488da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adult</topic><topic>Animals</topic><topic>Cytochrome b Group - deficiency</topic><topic>Cytochrome b Group - metabolism</topic><topic>Female</topic><topic>Humans</topic><topic>Intracellular Membranes - enzymology</topic><topic>Intracellular Membranes - metabolism</topic><topic>Intracellular Membranes - microbiology</topic><topic>Macrophages - enzymology</topic><topic>Macrophages - metabolism</topic><topic>Macrophages - microbiology</topic><topic>Mice</topic><topic>Mutagenesis</topic><topic>NADPH oxidase</topic><topic>NADPH Oxidases - antagonists &amp; inhibitors</topic><topic>NADPH Oxidases - metabolism</topic><topic>Phagosomes - enzymology</topic><topic>Phagosomes - genetics</topic><topic>Phagosomes - metabolism</topic><topic>Phagosomes - microbiology</topic><topic>Phenotype</topic><topic>Phosphoproteins - deficiency</topic><topic>Phosphoproteins - metabolism</topic><topic>Salmonella typhimurium</topic><topic>Salmonella typhimurium - genetics</topic><topic>Salmonella typhimurium - growth &amp; development</topic><topic>Salmonella typhimurium - pathogenicity</topic><topic>Superoxides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallois, Annabelle</creatorcontrib><creatorcontrib>Klein, Joanna R</creatorcontrib><creatorcontrib>Allen, Lee-Ann H</creatorcontrib><creatorcontrib>Jones, Bradley D</creatorcontrib><creatorcontrib>Nauseef, William M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>The Journal of immunology (1950)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallois, Annabelle</au><au>Klein, Joanna R</au><au>Allen, Lee-Ann H</au><au>Jones, Bradley D</au><au>Nauseef, William M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Salmonella Pathogenicity Island 2-Encoded Type III Secretion System Mediates Exclusion of NADPH Oxidase Assembly from the Phagosomal Membrane</atitle><jtitle>The Journal of immunology (1950)</jtitle><addtitle>J Immunol</addtitle><date>2001-05-01</date><risdate>2001</risdate><volume>166</volume><issue>9</issue><spage>5741</spage><epage>5748</epage><pages>5741-5748</pages><issn>0022-1767</issn><eissn>1550-6606</eissn><abstract>Salmonella typhimurium requires a type III secretion system encoded by pathogenicity island (SPI)-2 to survive and proliferate within macrophages. This survival implies that S. typhimurium avoids or withstands bactericidal events targeted to the microbe-containing vacuole, which include intraphagosomal production of reactive oxygen species (ROS), phagosomal acidification, and delivery of hydrolytic enzymes to the phagosome via fusion with lysosomes. Recent evidence suggests that S. typhimurium alters ROS production by murine macrophages in an SPI-2-dependent manner. To gain insights into the mechanism by which S. typhimurium inhibits intraphagosomal ROS production, we analyzed the subcellular distribution of NADPH oxidase components during infection of human monocyte-derived macrophages by wild-type (WT) or several SPI-2 mutant strains of S. typhimurium. We found that the membrane component of the NADPH oxidase, flavocytochrome b(558), was actively excluded or rapidly removed from the phagosomal membrane of WT-infected monocyte-derived macrophages, thereby preventing assembly of the NADPH oxidase complex and intraphagosomal production of superoxide anion. In contrast, the NADPH oxidase assembled on and generated ROS in phagosomes containing SPI-2 mutant S. typhimurium. Subversion of NADPH oxidase assembly by S. typhimurium was accompanied by increased bacterial replication relative to that of SPI-2 mutant strains, suggesting that the ability of WT S. typhimurium to prevent NADPH oxidase assembly at the phagosomal membrane represents an important virulence factor influencing its intracellular survival.</abstract><cop>United States</cop><pub>Am Assoc Immnol</pub><pmid>11313417</pmid><doi>10.4049/jimmunol.166.9.5741</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1767
ispartof The Journal of immunology (1950), 2001-05, Vol.166 (9), p.5741-5748
issn 0022-1767
1550-6606
language eng
recordid cdi_proquest_miscellaneous_17843854
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Adult
Animals
Cytochrome b Group - deficiency
Cytochrome b Group - metabolism
Female
Humans
Intracellular Membranes - enzymology
Intracellular Membranes - metabolism
Intracellular Membranes - microbiology
Macrophages - enzymology
Macrophages - metabolism
Macrophages - microbiology
Mice
Mutagenesis
NADPH oxidase
NADPH Oxidases - antagonists & inhibitors
NADPH Oxidases - metabolism
Phagosomes - enzymology
Phagosomes - genetics
Phagosomes - metabolism
Phagosomes - microbiology
Phenotype
Phosphoproteins - deficiency
Phosphoproteins - metabolism
Salmonella typhimurium
Salmonella typhimurium - genetics
Salmonella typhimurium - growth & development
Salmonella typhimurium - pathogenicity
Superoxides - metabolism
title Salmonella Pathogenicity Island 2-Encoded Type III Secretion System Mediates Exclusion of NADPH Oxidase Assembly from the Phagosomal Membrane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Salmonella%20Pathogenicity%20Island%202-Encoded%20Type%20III%20Secretion%20System%20Mediates%20Exclusion%20of%20NADPH%20Oxidase%20Assembly%20from%20the%20Phagosomal%20Membrane&rft.jtitle=The%20Journal%20of%20immunology%20(1950)&rft.au=Gallois,%20Annabelle&rft.date=2001-05-01&rft.volume=166&rft.issue=9&rft.spage=5741&rft.epage=5748&rft.pages=5741-5748&rft.issn=0022-1767&rft.eissn=1550-6606&rft_id=info:doi/10.4049/jimmunol.166.9.5741&rft_dat=%3Cproquest_cross%3E17843854%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17843854&rft_id=info:pmid/11313417&rfr_iscdi=true