Plasma sprayed cerium oxide coating inhibits H2O2-induced oxidative stress and supports cell viability

Oxidative stress is a risk factor in the pathogenesis of osteoporosis, and plays a major role in bone regeneration of osteoporotic patients. Cerium oxide (CeO 2 ) ceramics have the unique ability to protect various types of cells from oxidative damage, making them attractive for biomedical applicati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in medicine 2016-06, Vol.27 (6), p.100-100, Article 100
Hauptverfasser: Li, Kai, Xie, Youtao, You, Mingyu, Huang, Liping, Zheng, Xuebin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100
container_issue 6
container_start_page 100
container_title Journal of materials science. Materials in medicine
container_volume 27
creator Li, Kai
Xie, Youtao
You, Mingyu
Huang, Liping
Zheng, Xuebin
description Oxidative stress is a risk factor in the pathogenesis of osteoporosis, and plays a major role in bone regeneration of osteoporotic patients. Cerium oxide (CeO 2 ) ceramics have the unique ability to protect various types of cells from oxidative damage, making them attractive for biomedical applications. In this study, we developed a plasma sprayed CeO 2 coating with a hierarchical topography where ceria nanoparticles were superimposed in the micro-rough coating surface. The protective effects of the CeO 2 coating on the response of osteoblasts to H 2 O 2 -induced oxidative stress have been demonstrated in terms of cell viability, apoptosis and differentiation. The CeO 2 coating reversed the reduced superoxide dismutase activity, decreased reactive oxygen species production and suppressed malondialdehyde formation in H 2 O 2 -treated osteoblasts. It indicated that the CeO 2 coating can preserve the intracellular antioxidant defense system. The cytocompatibility of the CeO 2 coating was further assessed in vitro by cell viability assay and scanning electron microscopy analysis. Taken together, the CeO 2 coating could provide an opportunity to be utilized as a potential candidate for bone regeneration under oxidative stress.
doi_str_mv 10.1007/s10856-016-5710-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1782831654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1782831654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-ac1a1224485f84db9d854477a00c2d86d8536296b85128686e8f3843726771693</originalsourceid><addsrcrecordid>eNp1kUtLxDAUhYMozjj6A9xIwI2baN5JlyK-YEAXug5pm2qGvkzawfn3pswoIrgKl3z33MM5AJwSfEkwVleRYC0kwkQioQhG2R6YE6EY4prpfTDHmVCIC4Zn4CjGFcaYZ0IcghlVOCOY0zmonmsbGwtjH-zGlbBwwY8N7D596WDR2cG3b9C37z73Q4QP9Iki35ZjkdCJSf9rB-MQXIzQtiWMY993IaGFq2u49jb3tR82x-CgsnV0J7t3AV7vbl9uHtDy6f7x5nqJCs70gGxBLKGUcy0qzcs8K7XgXCmLcUFLLdPIJM1krgWhWmrpdMU0Z4pKpYjM2AJcbHX70H2MLg6m8XGyYlvXjdEQpalmRAqe0PM_6KobQ5vcTRQRVAomEkW2VBG6GIOrTB98Y8PGEGymEsy2BJNKMFMJZjJxtlMe88aVPxvfqSeAboGUesrXhV-n_1X9AtgtkF4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781526535</pqid></control><display><type>article</type><title>Plasma sprayed cerium oxide coating inhibits H2O2-induced oxidative stress and supports cell viability</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Li, Kai ; Xie, Youtao ; You, Mingyu ; Huang, Liping ; Zheng, Xuebin</creator><creatorcontrib>Li, Kai ; Xie, Youtao ; You, Mingyu ; Huang, Liping ; Zheng, Xuebin</creatorcontrib><description>Oxidative stress is a risk factor in the pathogenesis of osteoporosis, and plays a major role in bone regeneration of osteoporotic patients. Cerium oxide (CeO 2 ) ceramics have the unique ability to protect various types of cells from oxidative damage, making them attractive for biomedical applications. In this study, we developed a plasma sprayed CeO 2 coating with a hierarchical topography where ceria nanoparticles were superimposed in the micro-rough coating surface. The protective effects of the CeO 2 coating on the response of osteoblasts to H 2 O 2 -induced oxidative stress have been demonstrated in terms of cell viability, apoptosis and differentiation. The CeO 2 coating reversed the reduced superoxide dismutase activity, decreased reactive oxygen species production and suppressed malondialdehyde formation in H 2 O 2 -treated osteoblasts. It indicated that the CeO 2 coating can preserve the intracellular antioxidant defense system. The cytocompatibility of the CeO 2 coating was further assessed in vitro by cell viability assay and scanning electron microscopy analysis. Taken together, the CeO 2 coating could provide an opportunity to be utilized as a potential candidate for bone regeneration under oxidative stress.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-016-5710-9</identifier><identifier>PMID: 27091042</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>3T3 Cells ; Animals ; Biocompatibility Studies ; Biocompatible Materials ; Biomaterials ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Cell Survival - drug effects ; Ceramics ; Cerium - chemistry ; Chemistry and Materials Science ; Composites ; Glass ; Hydrogen Peroxide - toxicity ; Materials Science ; Materials Testing ; Mice ; Microscopy, Electron, Scanning ; Natural Materials ; Osteoporosis ; Oxidative stress ; Oxidative Stress - drug effects ; Pathogenesis ; Plasma ; Polymer Sciences ; Prostheses and Implants ; Regenerative Medicine/Tissue Engineering ; Risk factors ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Journal of materials science. Materials in medicine, 2016-06, Vol.27 (6), p.100-100, Article 100</ispartof><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-ac1a1224485f84db9d854477a00c2d86d8536296b85128686e8f3843726771693</citedby><cites>FETCH-LOGICAL-c438t-ac1a1224485f84db9d854477a00c2d86d8536296b85128686e8f3843726771693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-016-5710-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-016-5710-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27091042$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Kai</creatorcontrib><creatorcontrib>Xie, Youtao</creatorcontrib><creatorcontrib>You, Mingyu</creatorcontrib><creatorcontrib>Huang, Liping</creatorcontrib><creatorcontrib>Zheng, Xuebin</creatorcontrib><title>Plasma sprayed cerium oxide coating inhibits H2O2-induced oxidative stress and supports cell viability</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>Oxidative stress is a risk factor in the pathogenesis of osteoporosis, and plays a major role in bone regeneration of osteoporotic patients. Cerium oxide (CeO 2 ) ceramics have the unique ability to protect various types of cells from oxidative damage, making them attractive for biomedical applications. In this study, we developed a plasma sprayed CeO 2 coating with a hierarchical topography where ceria nanoparticles were superimposed in the micro-rough coating surface. The protective effects of the CeO 2 coating on the response of osteoblasts to H 2 O 2 -induced oxidative stress have been demonstrated in terms of cell viability, apoptosis and differentiation. The CeO 2 coating reversed the reduced superoxide dismutase activity, decreased reactive oxygen species production and suppressed malondialdehyde formation in H 2 O 2 -treated osteoblasts. It indicated that the CeO 2 coating can preserve the intracellular antioxidant defense system. The cytocompatibility of the CeO 2 coating was further assessed in vitro by cell viability assay and scanning electron microscopy analysis. Taken together, the CeO 2 coating could provide an opportunity to be utilized as a potential candidate for bone regeneration under oxidative stress.</description><subject>3T3 Cells</subject><subject>Animals</subject><subject>Biocompatibility Studies</subject><subject>Biocompatible Materials</subject><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Cell Survival - drug effects</subject><subject>Ceramics</subject><subject>Cerium - chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Glass</subject><subject>Hydrogen Peroxide - toxicity</subject><subject>Materials Science</subject><subject>Materials Testing</subject><subject>Mice</subject><subject>Microscopy, Electron, Scanning</subject><subject>Natural Materials</subject><subject>Osteoporosis</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Pathogenesis</subject><subject>Plasma</subject><subject>Polymer Sciences</subject><subject>Prostheses and Implants</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Risk factors</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUtLxDAUhYMozjj6A9xIwI2baN5JlyK-YEAXug5pm2qGvkzawfn3pswoIrgKl3z33MM5AJwSfEkwVleRYC0kwkQioQhG2R6YE6EY4prpfTDHmVCIC4Zn4CjGFcaYZ0IcghlVOCOY0zmonmsbGwtjH-zGlbBwwY8N7D596WDR2cG3b9C37z73Q4QP9Iki35ZjkdCJSf9rB-MQXIzQtiWMY993IaGFq2u49jb3tR82x-CgsnV0J7t3AV7vbl9uHtDy6f7x5nqJCs70gGxBLKGUcy0qzcs8K7XgXCmLcUFLLdPIJM1krgWhWmrpdMU0Z4pKpYjM2AJcbHX70H2MLg6m8XGyYlvXjdEQpalmRAqe0PM_6KobQ5vcTRQRVAomEkW2VBG6GIOrTB98Y8PGEGymEsy2BJNKMFMJZjJxtlMe88aVPxvfqSeAboGUesrXhV-n_1X9AtgtkF4</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Li, Kai</creator><creator>Xie, Youtao</creator><creator>You, Mingyu</creator><creator>Huang, Liping</creator><creator>Zheng, Xuebin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope></search><sort><creationdate>20160601</creationdate><title>Plasma sprayed cerium oxide coating inhibits H2O2-induced oxidative stress and supports cell viability</title><author>Li, Kai ; Xie, Youtao ; You, Mingyu ; Huang, Liping ; Zheng, Xuebin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-ac1a1224485f84db9d854477a00c2d86d8536296b85128686e8f3843726771693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>3T3 Cells</topic><topic>Animals</topic><topic>Biocompatibility Studies</topic><topic>Biocompatible Materials</topic><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Cell Survival - drug effects</topic><topic>Ceramics</topic><topic>Cerium - chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Glass</topic><topic>Hydrogen Peroxide - toxicity</topic><topic>Materials Science</topic><topic>Materials Testing</topic><topic>Mice</topic><topic>Microscopy, Electron, Scanning</topic><topic>Natural Materials</topic><topic>Osteoporosis</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Pathogenesis</topic><topic>Plasma</topic><topic>Polymer Sciences</topic><topic>Prostheses and Implants</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Risk factors</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Kai</creatorcontrib><creatorcontrib>Xie, Youtao</creatorcontrib><creatorcontrib>You, Mingyu</creatorcontrib><creatorcontrib>Huang, Liping</creatorcontrib><creatorcontrib>Zheng, Xuebin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Kai</au><au>Xie, Youtao</au><au>You, Mingyu</au><au>Huang, Liping</au><au>Zheng, Xuebin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasma sprayed cerium oxide coating inhibits H2O2-induced oxidative stress and supports cell viability</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>27</volume><issue>6</issue><spage>100</spage><epage>100</epage><pages>100-100</pages><artnum>100</artnum><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>Oxidative stress is a risk factor in the pathogenesis of osteoporosis, and plays a major role in bone regeneration of osteoporotic patients. Cerium oxide (CeO 2 ) ceramics have the unique ability to protect various types of cells from oxidative damage, making them attractive for biomedical applications. In this study, we developed a plasma sprayed CeO 2 coating with a hierarchical topography where ceria nanoparticles were superimposed in the micro-rough coating surface. The protective effects of the CeO 2 coating on the response of osteoblasts to H 2 O 2 -induced oxidative stress have been demonstrated in terms of cell viability, apoptosis and differentiation. The CeO 2 coating reversed the reduced superoxide dismutase activity, decreased reactive oxygen species production and suppressed malondialdehyde formation in H 2 O 2 -treated osteoblasts. It indicated that the CeO 2 coating can preserve the intracellular antioxidant defense system. The cytocompatibility of the CeO 2 coating was further assessed in vitro by cell viability assay and scanning electron microscopy analysis. Taken together, the CeO 2 coating could provide an opportunity to be utilized as a potential candidate for bone regeneration under oxidative stress.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>27091042</pmid><doi>10.1007/s10856-016-5710-9</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4530
ispartof Journal of materials science. Materials in medicine, 2016-06, Vol.27 (6), p.100-100, Article 100
issn 0957-4530
1573-4838
language eng
recordid cdi_proquest_miscellaneous_1782831654
source MEDLINE; Springer Nature - Complete Springer Journals
subjects 3T3 Cells
Animals
Biocompatibility Studies
Biocompatible Materials
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical materials
Cell Survival - drug effects
Ceramics
Cerium - chemistry
Chemistry and Materials Science
Composites
Glass
Hydrogen Peroxide - toxicity
Materials Science
Materials Testing
Mice
Microscopy, Electron, Scanning
Natural Materials
Osteoporosis
Oxidative stress
Oxidative Stress - drug effects
Pathogenesis
Plasma
Polymer Sciences
Prostheses and Implants
Regenerative Medicine/Tissue Engineering
Risk factors
Surfaces and Interfaces
Thin Films
title Plasma sprayed cerium oxide coating inhibits H2O2-induced oxidative stress and supports cell viability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A50%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasma%20sprayed%20cerium%20oxide%20coating%20inhibits%20H2O2-induced%20oxidative%20stress%20and%20supports%20cell%20viability&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Li,%20Kai&rft.date=2016-06-01&rft.volume=27&rft.issue=6&rft.spage=100&rft.epage=100&rft.pages=100-100&rft.artnum=100&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-016-5710-9&rft_dat=%3Cproquest_cross%3E1782831654%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1781526535&rft_id=info:pmid/27091042&rfr_iscdi=true