In vitro expansion of human cardiac progenitor cells: Exploring ‘omics tools for characterization of cell-based allogeneic products

Abstract Cardiac stem/progenitor cells (hCPC) have been shown to be capable to regenerate contractile myocardium. However, due to their relative low abundance in the heart, in vitro expansion of hCPC is mandatory to achieve necessary quantities for allogeneic or autologous cardiac regeneration thera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Translational research : the journal of laboratory and clinical medicine 2016-05, Vol.171, p.96-110.e3
Hauptverfasser: Gomes-Alves, P, Serra, M, Brito, C, Ricardo, C.P, Cunha, R, Sousa, M.F, Sanchez, B, Bernad, A, Carrondo, M.J.T, Rodriguez-Borlado, L, Alves, P.M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110.e3
container_issue
container_start_page 96
container_title Translational research : the journal of laboratory and clinical medicine
container_volume 171
creator Gomes-Alves, P
Serra, M
Brito, C
Ricardo, C.P
Cunha, R
Sousa, M.F
Sanchez, B
Bernad, A
Carrondo, M.J.T
Rodriguez-Borlado, L
Alves, P.M
description Abstract Cardiac stem/progenitor cells (hCPC) have been shown to be capable to regenerate contractile myocardium. However, due to their relative low abundance in the heart, in vitro expansion of hCPC is mandatory to achieve necessary quantities for allogeneic or autologous cardiac regeneration therapy applications (106 -109 cells/patient). Up to now, cell number requirements of ongoing phase I/IIa trials have been fulfilled with production in static monolayer cultures. However, this manufacturing process poses critical limitations when moving to the following clinical phases where hundreds of patients will be enrolled. For this, increased process yield is required, while guaranteeing the quality of the cell-based products. In this work we developed and validated a robust, scalable and GMP-compatible bioprocess for the expansion of high quality hCPC. We applied platforms extensively used by the biopharmaceutical industry, such as microcarrier technology and stirred systems, and assessed culture conditions’ impact on hCPC’s quality and potency, as required by regulatory agencies. Complementary analytical assays including gene expression microarrays and mass spectrometry-based approaches were explored to compare transcriptome, proteome, surface markers and secretion profiles of hCPC cultured in static monolayers and in stirred microcarrier-based systems. Our results show that stirred microcarrier-based culture systems enabled achieving more than 3-fold increase in hCPC expansion, when compared to traditional static monolayers, while retaining cell’s phenotype and similar ‘omics’ profiles. These findings demonstrate that this change in the production process does not affect cell’s identity and quality, with potential to be translated into a transversal production platform for clinical development of stem cell therapies.
doi_str_mv 10.1016/j.trsl.2016.02.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1781538223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S1931524416000554</els_id><sourcerecordid>1781538223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-e10b7e7b7857a66645cef74a71df4e9caec1c13afd50fb3861c99872cec34c363</originalsourceid><addsrcrecordid>eNp9kr1uFDEURkcIRELgBSiQS5oZfG3PH0JIURQgUiQKoLY8d-4kXrz2Ys9ECRUN78Dz8SR42IWCgsq3-L5j-9hF8RR4BRyaF5tqjslVIs8VFxXncK84hq7tSuiA389zL6GshVJHxaOUNpyrpufqYXEkml4oruRx8f3Csxs7x8Dodmd8ssGzMLHrZWs8QxNHa5DtYrgib-cQGZJz6SU7v925EK2_Yj-__Qhbi4nNIbjEpjVzbaLBmaL9auYDcO2Vg0k0MuPciiP7GzwuOKfHxYPJuERPDutJ8enN-cezd-Xl-7cXZ6eXJSqAuSTgQ0vt0HZ1a5qmUTXS1CrTwjgp6tEQAoI001jzaZBdA9j3XSuQUCqUjTwpnu-5eeMvC6VZb21aj2Y8hSVpaDuoZSeEzFGxj2IMKUWa9C7arYl3Grhe9euNXvXrVb_mQmf9ufTswF-GLY1_K39858CrfYDyLW8sRZ3QkkcabSSc9Rjs__mv_6mjs96icZ_pjtImLNFnfxp0ygX9Yf0A6_tDwzmvayV_AdHFr38</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781538223</pqid></control><display><type>article</type><title>In vitro expansion of human cardiac progenitor cells: Exploring ‘omics tools for characterization of cell-based allogeneic products</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Gomes-Alves, P ; Serra, M ; Brito, C ; Ricardo, C.P ; Cunha, R ; Sousa, M.F ; Sanchez, B ; Bernad, A ; Carrondo, M.J.T ; Rodriguez-Borlado, L ; Alves, P.M</creator><creatorcontrib>Gomes-Alves, P ; Serra, M ; Brito, C ; Ricardo, C.P ; Cunha, R ; Sousa, M.F ; Sanchez, B ; Bernad, A ; Carrondo, M.J.T ; Rodriguez-Borlado, L ; Alves, P.M</creatorcontrib><description>Abstract Cardiac stem/progenitor cells (hCPC) have been shown to be capable to regenerate contractile myocardium. However, due to their relative low abundance in the heart, in vitro expansion of hCPC is mandatory to achieve necessary quantities for allogeneic or autologous cardiac regeneration therapy applications (106 -109 cells/patient). Up to now, cell number requirements of ongoing phase I/IIa trials have been fulfilled with production in static monolayer cultures. However, this manufacturing process poses critical limitations when moving to the following clinical phases where hundreds of patients will be enrolled. For this, increased process yield is required, while guaranteeing the quality of the cell-based products. In this work we developed and validated a robust, scalable and GMP-compatible bioprocess for the expansion of high quality hCPC. We applied platforms extensively used by the biopharmaceutical industry, such as microcarrier technology and stirred systems, and assessed culture conditions’ impact on hCPC’s quality and potency, as required by regulatory agencies. Complementary analytical assays including gene expression microarrays and mass spectrometry-based approaches were explored to compare transcriptome, proteome, surface markers and secretion profiles of hCPC cultured in static monolayers and in stirred microcarrier-based systems. Our results show that stirred microcarrier-based culture systems enabled achieving more than 3-fold increase in hCPC expansion, when compared to traditional static monolayers, while retaining cell’s phenotype and similar ‘omics’ profiles. These findings demonstrate that this change in the production process does not affect cell’s identity and quality, with potential to be translated into a transversal production platform for clinical development of stem cell therapies.</description><identifier>ISSN: 1931-5244</identifier><identifier>EISSN: 1878-1810</identifier><identifier>DOI: 10.1016/j.trsl.2016.02.001</identifier><identifier>PMID: 26924043</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biomarkers - metabolism ; Cell Culture Techniques ; Cell Proliferation ; Cells, Cultured ; Electrophoresis, Gel, Two-Dimensional ; Gene Expression Profiling ; Humans ; Internal Medicine ; Mass Spectrometry ; Microspheres ; Myocardium - enzymology ; Phenotype ; Proteome - metabolism ; Proteomics - methods ; Reproducibility of Results ; Stem Cells - cytology ; Transplantation, Homologous</subject><ispartof>Translational research : the journal of laboratory and clinical medicine, 2016-05, Vol.171, p.96-110.e3</ispartof><rights>Elsevier Inc.</rights><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-e10b7e7b7857a66645cef74a71df4e9caec1c13afd50fb3861c99872cec34c363</citedby><cites>FETCH-LOGICAL-c411t-e10b7e7b7857a66645cef74a71df4e9caec1c13afd50fb3861c99872cec34c363</cites><orcidid>0000-0001-7245-6785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1931524416000554$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26924043$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gomes-Alves, P</creatorcontrib><creatorcontrib>Serra, M</creatorcontrib><creatorcontrib>Brito, C</creatorcontrib><creatorcontrib>Ricardo, C.P</creatorcontrib><creatorcontrib>Cunha, R</creatorcontrib><creatorcontrib>Sousa, M.F</creatorcontrib><creatorcontrib>Sanchez, B</creatorcontrib><creatorcontrib>Bernad, A</creatorcontrib><creatorcontrib>Carrondo, M.J.T</creatorcontrib><creatorcontrib>Rodriguez-Borlado, L</creatorcontrib><creatorcontrib>Alves, P.M</creatorcontrib><title>In vitro expansion of human cardiac progenitor cells: Exploring ‘omics tools for characterization of cell-based allogeneic products</title><title>Translational research : the journal of laboratory and clinical medicine</title><addtitle>Transl Res</addtitle><description>Abstract Cardiac stem/progenitor cells (hCPC) have been shown to be capable to regenerate contractile myocardium. However, due to their relative low abundance in the heart, in vitro expansion of hCPC is mandatory to achieve necessary quantities for allogeneic or autologous cardiac regeneration therapy applications (106 -109 cells/patient). Up to now, cell number requirements of ongoing phase I/IIa trials have been fulfilled with production in static monolayer cultures. However, this manufacturing process poses critical limitations when moving to the following clinical phases where hundreds of patients will be enrolled. For this, increased process yield is required, while guaranteeing the quality of the cell-based products. In this work we developed and validated a robust, scalable and GMP-compatible bioprocess for the expansion of high quality hCPC. We applied platforms extensively used by the biopharmaceutical industry, such as microcarrier technology and stirred systems, and assessed culture conditions’ impact on hCPC’s quality and potency, as required by regulatory agencies. Complementary analytical assays including gene expression microarrays and mass spectrometry-based approaches were explored to compare transcriptome, proteome, surface markers and secretion profiles of hCPC cultured in static monolayers and in stirred microcarrier-based systems. Our results show that stirred microcarrier-based culture systems enabled achieving more than 3-fold increase in hCPC expansion, when compared to traditional static monolayers, while retaining cell’s phenotype and similar ‘omics’ profiles. These findings demonstrate that this change in the production process does not affect cell’s identity and quality, with potential to be translated into a transversal production platform for clinical development of stem cell therapies.</description><subject>Biomarkers - metabolism</subject><subject>Cell Culture Techniques</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>Electrophoresis, Gel, Two-Dimensional</subject><subject>Gene Expression Profiling</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Mass Spectrometry</subject><subject>Microspheres</subject><subject>Myocardium - enzymology</subject><subject>Phenotype</subject><subject>Proteome - metabolism</subject><subject>Proteomics - methods</subject><subject>Reproducibility of Results</subject><subject>Stem Cells - cytology</subject><subject>Transplantation, Homologous</subject><issn>1931-5244</issn><issn>1878-1810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kr1uFDEURkcIRELgBSiQS5oZfG3PH0JIURQgUiQKoLY8d-4kXrz2Ys9ECRUN78Dz8SR42IWCgsq3-L5j-9hF8RR4BRyaF5tqjslVIs8VFxXncK84hq7tSuiA389zL6GshVJHxaOUNpyrpufqYXEkml4oruRx8f3Csxs7x8Dodmd8ssGzMLHrZWs8QxNHa5DtYrgib-cQGZJz6SU7v925EK2_Yj-__Qhbi4nNIbjEpjVzbaLBmaL9auYDcO2Vg0k0MuPciiP7GzwuOKfHxYPJuERPDutJ8enN-cezd-Xl-7cXZ6eXJSqAuSTgQ0vt0HZ1a5qmUTXS1CrTwjgp6tEQAoI001jzaZBdA9j3XSuQUCqUjTwpnu-5eeMvC6VZb21aj2Y8hSVpaDuoZSeEzFGxj2IMKUWa9C7arYl3Grhe9euNXvXrVb_mQmf9ufTswF-GLY1_K39858CrfYDyLW8sRZ3QkkcabSSc9Rjs__mv_6mjs96icZ_pjtImLNFnfxp0ygX9Yf0A6_tDwzmvayV_AdHFr38</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Gomes-Alves, P</creator><creator>Serra, M</creator><creator>Brito, C</creator><creator>Ricardo, C.P</creator><creator>Cunha, R</creator><creator>Sousa, M.F</creator><creator>Sanchez, B</creator><creator>Bernad, A</creator><creator>Carrondo, M.J.T</creator><creator>Rodriguez-Borlado, L</creator><creator>Alves, P.M</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7245-6785</orcidid></search><sort><creationdate>20160501</creationdate><title>In vitro expansion of human cardiac progenitor cells: Exploring ‘omics tools for characterization of cell-based allogeneic products</title><author>Gomes-Alves, P ; Serra, M ; Brito, C ; Ricardo, C.P ; Cunha, R ; Sousa, M.F ; Sanchez, B ; Bernad, A ; Carrondo, M.J.T ; Rodriguez-Borlado, L ; Alves, P.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-e10b7e7b7857a66645cef74a71df4e9caec1c13afd50fb3861c99872cec34c363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biomarkers - metabolism</topic><topic>Cell Culture Techniques</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>Electrophoresis, Gel, Two-Dimensional</topic><topic>Gene Expression Profiling</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Mass Spectrometry</topic><topic>Microspheres</topic><topic>Myocardium - enzymology</topic><topic>Phenotype</topic><topic>Proteome - metabolism</topic><topic>Proteomics - methods</topic><topic>Reproducibility of Results</topic><topic>Stem Cells - cytology</topic><topic>Transplantation, Homologous</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomes-Alves, P</creatorcontrib><creatorcontrib>Serra, M</creatorcontrib><creatorcontrib>Brito, C</creatorcontrib><creatorcontrib>Ricardo, C.P</creatorcontrib><creatorcontrib>Cunha, R</creatorcontrib><creatorcontrib>Sousa, M.F</creatorcontrib><creatorcontrib>Sanchez, B</creatorcontrib><creatorcontrib>Bernad, A</creatorcontrib><creatorcontrib>Carrondo, M.J.T</creatorcontrib><creatorcontrib>Rodriguez-Borlado, L</creatorcontrib><creatorcontrib>Alves, P.M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Translational research : the journal of laboratory and clinical medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomes-Alves, P</au><au>Serra, M</au><au>Brito, C</au><au>Ricardo, C.P</au><au>Cunha, R</au><au>Sousa, M.F</au><au>Sanchez, B</au><au>Bernad, A</au><au>Carrondo, M.J.T</au><au>Rodriguez-Borlado, L</au><au>Alves, P.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro expansion of human cardiac progenitor cells: Exploring ‘omics tools for characterization of cell-based allogeneic products</atitle><jtitle>Translational research : the journal of laboratory and clinical medicine</jtitle><addtitle>Transl Res</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>171</volume><spage>96</spage><epage>110.e3</epage><pages>96-110.e3</pages><issn>1931-5244</issn><eissn>1878-1810</eissn><abstract>Abstract Cardiac stem/progenitor cells (hCPC) have been shown to be capable to regenerate contractile myocardium. However, due to their relative low abundance in the heart, in vitro expansion of hCPC is mandatory to achieve necessary quantities for allogeneic or autologous cardiac regeneration therapy applications (106 -109 cells/patient). Up to now, cell number requirements of ongoing phase I/IIa trials have been fulfilled with production in static monolayer cultures. However, this manufacturing process poses critical limitations when moving to the following clinical phases where hundreds of patients will be enrolled. For this, increased process yield is required, while guaranteeing the quality of the cell-based products. In this work we developed and validated a robust, scalable and GMP-compatible bioprocess for the expansion of high quality hCPC. We applied platforms extensively used by the biopharmaceutical industry, such as microcarrier technology and stirred systems, and assessed culture conditions’ impact on hCPC’s quality and potency, as required by regulatory agencies. Complementary analytical assays including gene expression microarrays and mass spectrometry-based approaches were explored to compare transcriptome, proteome, surface markers and secretion profiles of hCPC cultured in static monolayers and in stirred microcarrier-based systems. Our results show that stirred microcarrier-based culture systems enabled achieving more than 3-fold increase in hCPC expansion, when compared to traditional static monolayers, while retaining cell’s phenotype and similar ‘omics’ profiles. These findings demonstrate that this change in the production process does not affect cell’s identity and quality, with potential to be translated into a transversal production platform for clinical development of stem cell therapies.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26924043</pmid><doi>10.1016/j.trsl.2016.02.001</doi><orcidid>https://orcid.org/0000-0001-7245-6785</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1931-5244
ispartof Translational research : the journal of laboratory and clinical medicine, 2016-05, Vol.171, p.96-110.e3
issn 1931-5244
1878-1810
language eng
recordid cdi_proquest_miscellaneous_1781538223
source MEDLINE; Elsevier ScienceDirect Journals
subjects Biomarkers - metabolism
Cell Culture Techniques
Cell Proliferation
Cells, Cultured
Electrophoresis, Gel, Two-Dimensional
Gene Expression Profiling
Humans
Internal Medicine
Mass Spectrometry
Microspheres
Myocardium - enzymology
Phenotype
Proteome - metabolism
Proteomics - methods
Reproducibility of Results
Stem Cells - cytology
Transplantation, Homologous
title In vitro expansion of human cardiac progenitor cells: Exploring ‘omics tools for characterization of cell-based allogeneic products
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A45%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20expansion%20of%20human%20cardiac%20progenitor%20cells:%20Exploring%20%E2%80%98omics%20tools%20for%20characterization%20of%20cell-based%20allogeneic%20products&rft.jtitle=Translational%20research%20:%20the%20journal%20of%20laboratory%20and%20clinical%20medicine&rft.au=Gomes-Alves,%20P&rft.date=2016-05-01&rft.volume=171&rft.spage=96&rft.epage=110.e3&rft.pages=96-110.e3&rft.issn=1931-5244&rft.eissn=1878-1810&rft_id=info:doi/10.1016/j.trsl.2016.02.001&rft_dat=%3Cproquest_cross%3E1781538223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1781538223&rft_id=info:pmid/26924043&rft_els_id=1_s2_0_S1931524416000554&rfr_iscdi=true