Automated background subtraction technique for electron energy‐loss spectroscopy and application to semiconductor heterostructures

Summary Electron energy‐loss spectroscopy (EELS) has become a standard tool for identification and sometimes also quantification of elements in materials science. This is important for understanding the chemical and/or structural composition of processed materials. In EELS, the background is often m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microscopy (Oxford) 2016-05, Vol.262 (2), p.157-166
Hauptverfasser: ANGADI, VEERENDRA C, ABHAYARATNE, CHARITH, WALTHER, THOMAS
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 166
container_issue 2
container_start_page 157
container_title Journal of microscopy (Oxford)
container_volume 262
creator ANGADI, VEERENDRA C
ABHAYARATNE, CHARITH
WALTHER, THOMAS
description Summary Electron energy‐loss spectroscopy (EELS) has become a standard tool for identification and sometimes also quantification of elements in materials science. This is important for understanding the chemical and/or structural composition of processed materials. In EELS, the background is often modelled using an inverse power‐law function. Core‐loss ionization edges are superimposed on top of the dominating background, making it difficult to quantify their intensities. The inverse power‐law has to be modelled for each pre‐edge region of the ionization edges in the spectrum individually rather than for the entire spectrum. To achieve this, the prerequisite is that one knows all core losses possibly present. The aim of this study is to automatically detect core‐loss edges, model the background and extract quantitative elemental maps and profiles of EELS, based on several EELS spectrum images (EELS SI) without any prior knowledge of the material. The algorithm provides elemental maps and concentration profiles by making smart decisions in selecting pre‐edge regions and integration ranges. The results of the quantification for a semiconductor thin film heterostructure show high chemical sensitivity, reasonable group III/V intensity ratios but also quantification issues when narrow integration windows are used without deconvolution. Lay description Electron energy‐loss spectroscopy (EELS) has become a standard tool for identification and sometimes also quantification of elements in materials science. This is important for understanding the chemical and/or structural composition of processed materials. In EELS, the background is often intense and can be modelled over small energy ranges using an inverse power‐law function. On top of this background, core‐loss edges are superimposed that are due to the ionization energies characteristic of each element. This study describes a Matlab algorithm to automatically detect and quantify core‐loss edges based on a single inelastic scattering approach, without any prior knowledge of the material. The algorithm provides elemental maps and concentration profiles by making smart decisions in selecting preedge regions and integration ranges. Deconvolution to take into account plural scattering is not considered yet but will be integrated in a future version.
doi_str_mv 10.1111/jmi.12397
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1781532953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1951548456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4167-eed34a7898db6f993b1473632e3973ac281e3224d5f16f69506f66a1ab5f33773</originalsourceid><addsrcrecordid>eNp9kctu1TAURS0EopfCgB9AkZjAIK0fsR0Pq4pHURETGFuOc9LmksTBD1V3xoAP4Bv5Eg5NYYAEHvhxtLTkrU3IU0ZPGK7T_TyeMC6Mvkd2TChZ85a198mOUs5rrjk9Io9S2lNKW9nSh-SIK2Pwynfk21nJYXYZ-qpz_vNVDGXpq1S6HJ3PY1iqDP56Gb8UqIYQK5jA54hjWCBeHX58_T6FlKq03o6TD-uhcmhw6zqN3m2GUCWYRx-WvviMkmvIgHCO-CwR0mPyYHBTgid35zH59PrVx_O39eWHNxfnZ5e1b5jSNUAvGqdb0_adGowRHWu0UIIDRhfOY2oQnDe9HJgalJEUd-WY6-QghNbimLzYvGsMGChlO4_JwzS5BUJJlumWScGNFIg-_wvdhxIX_J1lRjLZtI1U_6V0S7WSjWBIvdwoj6FThMGucZxdPFhG7a8CLRZobwtE9tmdsXQz9H_I340hcLoBN-MEh3-b7Lv3F5vyJ9lJp9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1780765431</pqid></control><display><type>article</type><title>Automated background subtraction technique for electron energy‐loss spectroscopy and application to semiconductor heterostructures</title><source>Wiley Journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>ANGADI, VEERENDRA C ; ABHAYARATNE, CHARITH ; WALTHER, THOMAS</creator><creatorcontrib>ANGADI, VEERENDRA C ; ABHAYARATNE, CHARITH ; WALTHER, THOMAS</creatorcontrib><description>Summary Electron energy‐loss spectroscopy (EELS) has become a standard tool for identification and sometimes also quantification of elements in materials science. This is important for understanding the chemical and/or structural composition of processed materials. In EELS, the background is often modelled using an inverse power‐law function. Core‐loss ionization edges are superimposed on top of the dominating background, making it difficult to quantify their intensities. The inverse power‐law has to be modelled for each pre‐edge region of the ionization edges in the spectrum individually rather than for the entire spectrum. To achieve this, the prerequisite is that one knows all core losses possibly present. The aim of this study is to automatically detect core‐loss edges, model the background and extract quantitative elemental maps and profiles of EELS, based on several EELS spectrum images (EELS SI) without any prior knowledge of the material. The algorithm provides elemental maps and concentration profiles by making smart decisions in selecting pre‐edge regions and integration ranges. The results of the quantification for a semiconductor thin film heterostructure show high chemical sensitivity, reasonable group III/V intensity ratios but also quantification issues when narrow integration windows are used without deconvolution. Lay description Electron energy‐loss spectroscopy (EELS) has become a standard tool for identification and sometimes also quantification of elements in materials science. This is important for understanding the chemical and/or structural composition of processed materials. In EELS, the background is often intense and can be modelled over small energy ranges using an inverse power‐law function. On top of this background, core‐loss edges are superimposed that are due to the ionization energies characteristic of each element. This study describes a Matlab algorithm to automatically detect and quantify core‐loss edges based on a single inelastic scattering approach, without any prior knowledge of the material. The algorithm provides elemental maps and concentration profiles by making smart decisions in selecting preedge regions and integration ranges. Deconvolution to take into account plural scattering is not considered yet but will be integrated in a future version.</description><identifier>ISSN: 0022-2720</identifier><identifier>EISSN: 1365-2818</identifier><identifier>DOI: 10.1111/jmi.12397</identifier><identifier>PMID: 26998582</identifier><identifier>CODEN: JMICAR</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Background subtraction ; Chemical composition ; Core loss ; Decisions ; Deconvolution ; Eels ; EELS quantification ; Electron energy ; Electrons ; Energy ; Energy consumption ; Heterostructures ; hyperspectral imaging ; Inelastic scattering ; Integration ; Ionization ; ionization edge ; Materials science ; Spectroscopy ; Spectrum analysis ; Subtraction</subject><ispartof>Journal of microscopy (Oxford), 2016-05, Vol.262 (2), p.157-166</ispartof><rights>2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society</rights><rights>2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.</rights><rights>Journal compilation © 2016 Royal Microscopical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4167-eed34a7898db6f993b1473632e3973ac281e3224d5f16f69506f66a1ab5f33773</citedby><cites>FETCH-LOGICAL-c4167-eed34a7898db6f993b1473632e3973ac281e3224d5f16f69506f66a1ab5f33773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjmi.12397$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjmi.12397$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26998582$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>ANGADI, VEERENDRA C</creatorcontrib><creatorcontrib>ABHAYARATNE, CHARITH</creatorcontrib><creatorcontrib>WALTHER, THOMAS</creatorcontrib><title>Automated background subtraction technique for electron energy‐loss spectroscopy and application to semiconductor heterostructures</title><title>Journal of microscopy (Oxford)</title><addtitle>J Microsc</addtitle><description>Summary Electron energy‐loss spectroscopy (EELS) has become a standard tool for identification and sometimes also quantification of elements in materials science. This is important for understanding the chemical and/or structural composition of processed materials. In EELS, the background is often modelled using an inverse power‐law function. Core‐loss ionization edges are superimposed on top of the dominating background, making it difficult to quantify their intensities. The inverse power‐law has to be modelled for each pre‐edge region of the ionization edges in the spectrum individually rather than for the entire spectrum. To achieve this, the prerequisite is that one knows all core losses possibly present. The aim of this study is to automatically detect core‐loss edges, model the background and extract quantitative elemental maps and profiles of EELS, based on several EELS spectrum images (EELS SI) without any prior knowledge of the material. The algorithm provides elemental maps and concentration profiles by making smart decisions in selecting pre‐edge regions and integration ranges. The results of the quantification for a semiconductor thin film heterostructure show high chemical sensitivity, reasonable group III/V intensity ratios but also quantification issues when narrow integration windows are used without deconvolution. Lay description Electron energy‐loss spectroscopy (EELS) has become a standard tool for identification and sometimes also quantification of elements in materials science. This is important for understanding the chemical and/or structural composition of processed materials. In EELS, the background is often intense and can be modelled over small energy ranges using an inverse power‐law function. On top of this background, core‐loss edges are superimposed that are due to the ionization energies characteristic of each element. This study describes a Matlab algorithm to automatically detect and quantify core‐loss edges based on a single inelastic scattering approach, without any prior knowledge of the material. The algorithm provides elemental maps and concentration profiles by making smart decisions in selecting preedge regions and integration ranges. Deconvolution to take into account plural scattering is not considered yet but will be integrated in a future version.</description><subject>Algorithms</subject><subject>Background subtraction</subject><subject>Chemical composition</subject><subject>Core loss</subject><subject>Decisions</subject><subject>Deconvolution</subject><subject>Eels</subject><subject>EELS quantification</subject><subject>Electron energy</subject><subject>Electrons</subject><subject>Energy</subject><subject>Energy consumption</subject><subject>Heterostructures</subject><subject>hyperspectral imaging</subject><subject>Inelastic scattering</subject><subject>Integration</subject><subject>Ionization</subject><subject>ionization edge</subject><subject>Materials science</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Subtraction</subject><issn>0022-2720</issn><issn>1365-2818</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kctu1TAURS0EopfCgB9AkZjAIK0fsR0Pq4pHURETGFuOc9LmksTBD1V3xoAP4Bv5Eg5NYYAEHvhxtLTkrU3IU0ZPGK7T_TyeMC6Mvkd2TChZ85a198mOUs5rrjk9Io9S2lNKW9nSh-SIK2Pwynfk21nJYXYZ-qpz_vNVDGXpq1S6HJ3PY1iqDP56Gb8UqIYQK5jA54hjWCBeHX58_T6FlKq03o6TD-uhcmhw6zqN3m2GUCWYRx-WvviMkmvIgHCO-CwR0mPyYHBTgid35zH59PrVx_O39eWHNxfnZ5e1b5jSNUAvGqdb0_adGowRHWu0UIIDRhfOY2oQnDe9HJgalJEUd-WY6-QghNbimLzYvGsMGChlO4_JwzS5BUJJlumWScGNFIg-_wvdhxIX_J1lRjLZtI1U_6V0S7WSjWBIvdwoj6FThMGucZxdPFhG7a8CLRZobwtE9tmdsXQz9H_I340hcLoBN-MEh3-b7Lv3F5vyJ9lJp9o</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>ANGADI, VEERENDRA C</creator><creator>ABHAYARATNE, CHARITH</creator><creator>WALTHER, THOMAS</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201605</creationdate><title>Automated background subtraction technique for electron energy‐loss spectroscopy and application to semiconductor heterostructures</title><author>ANGADI, VEERENDRA C ; ABHAYARATNE, CHARITH ; WALTHER, THOMAS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4167-eed34a7898db6f993b1473632e3973ac281e3224d5f16f69506f66a1ab5f33773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Background subtraction</topic><topic>Chemical composition</topic><topic>Core loss</topic><topic>Decisions</topic><topic>Deconvolution</topic><topic>Eels</topic><topic>EELS quantification</topic><topic>Electron energy</topic><topic>Electrons</topic><topic>Energy</topic><topic>Energy consumption</topic><topic>Heterostructures</topic><topic>hyperspectral imaging</topic><topic>Inelastic scattering</topic><topic>Integration</topic><topic>Ionization</topic><topic>ionization edge</topic><topic>Materials science</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Subtraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ANGADI, VEERENDRA C</creatorcontrib><creatorcontrib>ABHAYARATNE, CHARITH</creatorcontrib><creatorcontrib>WALTHER, THOMAS</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of microscopy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ANGADI, VEERENDRA C</au><au>ABHAYARATNE, CHARITH</au><au>WALTHER, THOMAS</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated background subtraction technique for electron energy‐loss spectroscopy and application to semiconductor heterostructures</atitle><jtitle>Journal of microscopy (Oxford)</jtitle><addtitle>J Microsc</addtitle><date>2016-05</date><risdate>2016</risdate><volume>262</volume><issue>2</issue><spage>157</spage><epage>166</epage><pages>157-166</pages><issn>0022-2720</issn><eissn>1365-2818</eissn><coden>JMICAR</coden><abstract>Summary Electron energy‐loss spectroscopy (EELS) has become a standard tool for identification and sometimes also quantification of elements in materials science. This is important for understanding the chemical and/or structural composition of processed materials. In EELS, the background is often modelled using an inverse power‐law function. Core‐loss ionization edges are superimposed on top of the dominating background, making it difficult to quantify their intensities. The inverse power‐law has to be modelled for each pre‐edge region of the ionization edges in the spectrum individually rather than for the entire spectrum. To achieve this, the prerequisite is that one knows all core losses possibly present. The aim of this study is to automatically detect core‐loss edges, model the background and extract quantitative elemental maps and profiles of EELS, based on several EELS spectrum images (EELS SI) without any prior knowledge of the material. The algorithm provides elemental maps and concentration profiles by making smart decisions in selecting pre‐edge regions and integration ranges. The results of the quantification for a semiconductor thin film heterostructure show high chemical sensitivity, reasonable group III/V intensity ratios but also quantification issues when narrow integration windows are used without deconvolution. Lay description Electron energy‐loss spectroscopy (EELS) has become a standard tool for identification and sometimes also quantification of elements in materials science. This is important for understanding the chemical and/or structural composition of processed materials. In EELS, the background is often intense and can be modelled over small energy ranges using an inverse power‐law function. On top of this background, core‐loss edges are superimposed that are due to the ionization energies characteristic of each element. This study describes a Matlab algorithm to automatically detect and quantify core‐loss edges based on a single inelastic scattering approach, without any prior knowledge of the material. The algorithm provides elemental maps and concentration profiles by making smart decisions in selecting preedge regions and integration ranges. Deconvolution to take into account plural scattering is not considered yet but will be integrated in a future version.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>26998582</pmid><doi>10.1111/jmi.12397</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2720
ispartof Journal of microscopy (Oxford), 2016-05, Vol.262 (2), p.157-166
issn 0022-2720
1365-2818
language eng
recordid cdi_proquest_miscellaneous_1781532953
source Wiley Journals; Wiley Online Library (Open Access Collection)
subjects Algorithms
Background subtraction
Chemical composition
Core loss
Decisions
Deconvolution
Eels
EELS quantification
Electron energy
Electrons
Energy
Energy consumption
Heterostructures
hyperspectral imaging
Inelastic scattering
Integration
Ionization
ionization edge
Materials science
Spectroscopy
Spectrum analysis
Subtraction
title Automated background subtraction technique for electron energy‐loss spectroscopy and application to semiconductor heterostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A58%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20background%20subtraction%20technique%20for%20electron%20energy%E2%80%90loss%20spectroscopy%20and%20application%20to%20semiconductor%20heterostructures&rft.jtitle=Journal%20of%20microscopy%20(Oxford)&rft.au=ANGADI,%20VEERENDRA%20C&rft.date=2016-05&rft.volume=262&rft.issue=2&rft.spage=157&rft.epage=166&rft.pages=157-166&rft.issn=0022-2720&rft.eissn=1365-2818&rft.coden=JMICAR&rft_id=info:doi/10.1111/jmi.12397&rft_dat=%3Cproquest_cross%3E1951548456%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1780765431&rft_id=info:pmid/26998582&rfr_iscdi=true