Transcription factor YB-1 mediates DNA polymerase alpha gene expression

Y-box protein-1 involvement in cyclin A and B1 gene regulation has recently been demonstrated. A more generalized role of this protein for cell replication is hypothesized as numerous regulatory sequences of cell cycle-related genes contain putative binding sites. In the present study the DNA polyme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2005-03, Vol.280 (9), p.7702-7711
Hauptverfasser: En-Nia, Abdelaziz, Yilmaz, Emek, Klinge, Uwe, Lovett, David H, Stefanidis, Ioannis, Mertens, Peter R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Y-box protein-1 involvement in cyclin A and B1 gene regulation has recently been demonstrated. A more generalized role of this protein for cell replication is hypothesized as numerous regulatory sequences of cell cycle-related genes contain putative binding sites. In the present study the DNA polymerase alpha (DPA) gene is identified as another YB-1-responsive gene with a Y-box and 3' inverted repeat sequence, designated DPA RE-1, in the serum-responsive promoter region. Overexpressed YB-1 concentration-dependently trans-activated DPA gene expression in reporter assays and Southwestern blotting as well as DNA binding analyses revealed binding of distinct endogenous proteins to the RE-1 with molecular sizes of 26, 32 and 52 kDa. Among these, YB-1 binding was confirmed using recombinant as well as endogenous proteins, with preferential single-stranded DNA binding. Early serum growth response in mesangial cells was accompanied by a nuclear YB-1 shift and nucleocomplex formation at the RE-1. Fine mapping of the DPA RE-1 sequence unraveled a dependence on co-factors for trans-regulation with gene activation in the context of a heterologous SV40 promoter but suppression in the context of the abbreviated homologous promoter sequence. A YB-1 knock down resulted in decreased DPA transcription rates and abrogated the serum-dependent induction of DPA transcription. These results link YB-1 with serum responsiveness of DPA gene expression and provide insight into the required sequence and protein binding context.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M413353200