Energy Transfer from Quantum Dots to Graphene and MoS2: The Role of Absorption and Screening in Two-Dimensional Materials
We report efficient nonradiative energy transfer (NRET) from core–shell, semiconducting quantum dots to adjacent two-dimensional sheets of graphene and MoS2 of single- and few-layer thickness. We observe quenching of the photoluminescence (PL) from individual quantum dots and enhanced PL decay rates...
Gespeichert in:
Veröffentlicht in: | Nano letters 2016-04, Vol.16 (4), p.2328-2333 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2333 |
---|---|
container_issue | 4 |
container_start_page | 2328 |
container_title | Nano letters |
container_volume | 16 |
creator | Raja, Archana Montoya−Castillo, Andrés Zultak, Johanna Zhang, Xiao-Xiao Ye, Ziliang Roquelet, Cyrielle Chenet, Daniel A van der Zande, Arend M Huang, Pinshane Jockusch, Steffen Hone, James Reichman, David R Brus, Louis E Heinz, Tony F |
description | We report efficient nonradiative energy transfer (NRET) from core–shell, semiconducting quantum dots to adjacent two-dimensional sheets of graphene and MoS2 of single- and few-layer thickness. We observe quenching of the photoluminescence (PL) from individual quantum dots and enhanced PL decay rates in time-resolved PL, corresponding to energy transfer rates of 1–10 ns–1. Our measurements reveal contrasting trends in the NRET rate from the quantum dot to the van der Waals material as a function of thickness. The rate increases significantly with increasing layer thickness of graphene, but decreases with increasing thickness of MoS2 layers. A classical electromagnetic theory accounts for both the trends and absolute rates observed for the NRET. The countervailing trends arise from the competition between screening and absorption of the electric field of the quantum dot dipole inside the acceptor layers. We extend our analysis to predict the type of NRET behavior for the near-field coupling of a chromophore to a range of semiconducting and metallic thin film materials. |
doi_str_mv | 10.1021/acs.nanolett.5b05012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1781153041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1781153041</sourcerecordid><originalsourceid>FETCH-LOGICAL-a318t-9756f784aeb7dd792fd60ba61c5e716b5ec6b92d6c2942b554bb61c40b1985963</originalsourceid><addsrcrecordid>eNo9kUFPwzAMhSMEgjH4BwjlyKUjSZu04Ya2MZA2IWCcq6R1oahNRpIK7d-TweBky--TLb-H0AUlE0oYvVaVnxhlbAchTLgmnFB2gEaUpyQRUrLD_77ITtCp9x-EEJlycoxOmJCsEDkfoe3cgHvb4rVTxjfgcONsj58GZcLQ45kNHgeLF05t3sEAVqbGK_vCbvD6HfBzPI5tg2-1t24TWmt-gJfKAZjWvOHW4PWXTWZtD8ZHWXV4pQK4VnX-DB01scD5vo7R6918Pb1Plo-Lh-ntMlEpLUIicy6avMgU6Lyuc8maWhCtBK045FRoDpXQktWiYjJjmvNM6yhmRFNZcCnSMbr63btx9nMAH8q-9RV0nTJgB1_SvKA7ozIa0cs9Ouge6nLj2l65bflnVwTILxDNLz_s4OJHcQMpd4mUu-FfIuU-kfQb92B_yQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781153041</pqid></control><display><type>article</type><title>Energy Transfer from Quantum Dots to Graphene and MoS2: The Role of Absorption and Screening in Two-Dimensional Materials</title><source>ACS Publications</source><creator>Raja, Archana ; Montoya−Castillo, Andrés ; Zultak, Johanna ; Zhang, Xiao-Xiao ; Ye, Ziliang ; Roquelet, Cyrielle ; Chenet, Daniel A ; van der Zande, Arend M ; Huang, Pinshane ; Jockusch, Steffen ; Hone, James ; Reichman, David R ; Brus, Louis E ; Heinz, Tony F</creator><creatorcontrib>Raja, Archana ; Montoya−Castillo, Andrés ; Zultak, Johanna ; Zhang, Xiao-Xiao ; Ye, Ziliang ; Roquelet, Cyrielle ; Chenet, Daniel A ; van der Zande, Arend M ; Huang, Pinshane ; Jockusch, Steffen ; Hone, James ; Reichman, David R ; Brus, Louis E ; Heinz, Tony F</creatorcontrib><description>We report efficient nonradiative energy transfer (NRET) from core–shell, semiconducting quantum dots to adjacent two-dimensional sheets of graphene and MoS2 of single- and few-layer thickness. We observe quenching of the photoluminescence (PL) from individual quantum dots and enhanced PL decay rates in time-resolved PL, corresponding to energy transfer rates of 1–10 ns–1. Our measurements reveal contrasting trends in the NRET rate from the quantum dot to the van der Waals material as a function of thickness. The rate increases significantly with increasing layer thickness of graphene, but decreases with increasing thickness of MoS2 layers. A classical electromagnetic theory accounts for both the trends and absolute rates observed for the NRET. The countervailing trends arise from the competition between screening and absorption of the electric field of the quantum dot dipole inside the acceptor layers. We extend our analysis to predict the type of NRET behavior for the near-field coupling of a chromophore to a range of semiconducting and metallic thin film materials.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.5b05012</identifier><identifier>PMID: 26928675</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2016-04, Vol.16 (4), p.2328-2333</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5b05012$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.5b05012$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26928675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Raja, Archana</creatorcontrib><creatorcontrib>Montoya−Castillo, Andrés</creatorcontrib><creatorcontrib>Zultak, Johanna</creatorcontrib><creatorcontrib>Zhang, Xiao-Xiao</creatorcontrib><creatorcontrib>Ye, Ziliang</creatorcontrib><creatorcontrib>Roquelet, Cyrielle</creatorcontrib><creatorcontrib>Chenet, Daniel A</creatorcontrib><creatorcontrib>van der Zande, Arend M</creatorcontrib><creatorcontrib>Huang, Pinshane</creatorcontrib><creatorcontrib>Jockusch, Steffen</creatorcontrib><creatorcontrib>Hone, James</creatorcontrib><creatorcontrib>Reichman, David R</creatorcontrib><creatorcontrib>Brus, Louis E</creatorcontrib><creatorcontrib>Heinz, Tony F</creatorcontrib><title>Energy Transfer from Quantum Dots to Graphene and MoS2: The Role of Absorption and Screening in Two-Dimensional Materials</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We report efficient nonradiative energy transfer (NRET) from core–shell, semiconducting quantum dots to adjacent two-dimensional sheets of graphene and MoS2 of single- and few-layer thickness. We observe quenching of the photoluminescence (PL) from individual quantum dots and enhanced PL decay rates in time-resolved PL, corresponding to energy transfer rates of 1–10 ns–1. Our measurements reveal contrasting trends in the NRET rate from the quantum dot to the van der Waals material as a function of thickness. The rate increases significantly with increasing layer thickness of graphene, but decreases with increasing thickness of MoS2 layers. A classical electromagnetic theory accounts for both the trends and absolute rates observed for the NRET. The countervailing trends arise from the competition between screening and absorption of the electric field of the quantum dot dipole inside the acceptor layers. We extend our analysis to predict the type of NRET behavior for the near-field coupling of a chromophore to a range of semiconducting and metallic thin film materials.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kUFPwzAMhSMEgjH4BwjlyKUjSZu04Ya2MZA2IWCcq6R1oahNRpIK7d-TweBky--TLb-H0AUlE0oYvVaVnxhlbAchTLgmnFB2gEaUpyQRUrLD_77ITtCp9x-EEJlycoxOmJCsEDkfoe3cgHvb4rVTxjfgcONsj58GZcLQ45kNHgeLF05t3sEAVqbGK_vCbvD6HfBzPI5tg2-1t24TWmt-gJfKAZjWvOHW4PWXTWZtD8ZHWXV4pQK4VnX-DB01scD5vo7R6918Pb1Plo-Lh-ntMlEpLUIicy6avMgU6Lyuc8maWhCtBK045FRoDpXQktWiYjJjmvNM6yhmRFNZcCnSMbr63btx9nMAH8q-9RV0nTJgB1_SvKA7ozIa0cs9Ouge6nLj2l65bflnVwTILxDNLz_s4OJHcQMpd4mUu-FfIuU-kfQb92B_yQ</recordid><startdate>20160413</startdate><enddate>20160413</enddate><creator>Raja, Archana</creator><creator>Montoya−Castillo, Andrés</creator><creator>Zultak, Johanna</creator><creator>Zhang, Xiao-Xiao</creator><creator>Ye, Ziliang</creator><creator>Roquelet, Cyrielle</creator><creator>Chenet, Daniel A</creator><creator>van der Zande, Arend M</creator><creator>Huang, Pinshane</creator><creator>Jockusch, Steffen</creator><creator>Hone, James</creator><creator>Reichman, David R</creator><creator>Brus, Louis E</creator><creator>Heinz, Tony F</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20160413</creationdate><title>Energy Transfer from Quantum Dots to Graphene and MoS2: The Role of Absorption and Screening in Two-Dimensional Materials</title><author>Raja, Archana ; Montoya−Castillo, Andrés ; Zultak, Johanna ; Zhang, Xiao-Xiao ; Ye, Ziliang ; Roquelet, Cyrielle ; Chenet, Daniel A ; van der Zande, Arend M ; Huang, Pinshane ; Jockusch, Steffen ; Hone, James ; Reichman, David R ; Brus, Louis E ; Heinz, Tony F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a318t-9756f784aeb7dd792fd60ba61c5e716b5ec6b92d6c2942b554bb61c40b1985963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raja, Archana</creatorcontrib><creatorcontrib>Montoya−Castillo, Andrés</creatorcontrib><creatorcontrib>Zultak, Johanna</creatorcontrib><creatorcontrib>Zhang, Xiao-Xiao</creatorcontrib><creatorcontrib>Ye, Ziliang</creatorcontrib><creatorcontrib>Roquelet, Cyrielle</creatorcontrib><creatorcontrib>Chenet, Daniel A</creatorcontrib><creatorcontrib>van der Zande, Arend M</creatorcontrib><creatorcontrib>Huang, Pinshane</creatorcontrib><creatorcontrib>Jockusch, Steffen</creatorcontrib><creatorcontrib>Hone, James</creatorcontrib><creatorcontrib>Reichman, David R</creatorcontrib><creatorcontrib>Brus, Louis E</creatorcontrib><creatorcontrib>Heinz, Tony F</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raja, Archana</au><au>Montoya−Castillo, Andrés</au><au>Zultak, Johanna</au><au>Zhang, Xiao-Xiao</au><au>Ye, Ziliang</au><au>Roquelet, Cyrielle</au><au>Chenet, Daniel A</au><au>van der Zande, Arend M</au><au>Huang, Pinshane</au><au>Jockusch, Steffen</au><au>Hone, James</au><au>Reichman, David R</au><au>Brus, Louis E</au><au>Heinz, Tony F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy Transfer from Quantum Dots to Graphene and MoS2: The Role of Absorption and Screening in Two-Dimensional Materials</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2016-04-13</date><risdate>2016</risdate><volume>16</volume><issue>4</issue><spage>2328</spage><epage>2333</epage><pages>2328-2333</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We report efficient nonradiative energy transfer (NRET) from core–shell, semiconducting quantum dots to adjacent two-dimensional sheets of graphene and MoS2 of single- and few-layer thickness. We observe quenching of the photoluminescence (PL) from individual quantum dots and enhanced PL decay rates in time-resolved PL, corresponding to energy transfer rates of 1–10 ns–1. Our measurements reveal contrasting trends in the NRET rate from the quantum dot to the van der Waals material as a function of thickness. The rate increases significantly with increasing layer thickness of graphene, but decreases with increasing thickness of MoS2 layers. A classical electromagnetic theory accounts for both the trends and absolute rates observed for the NRET. The countervailing trends arise from the competition between screening and absorption of the electric field of the quantum dot dipole inside the acceptor layers. We extend our analysis to predict the type of NRET behavior for the near-field coupling of a chromophore to a range of semiconducting and metallic thin film materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26928675</pmid><doi>10.1021/acs.nanolett.5b05012</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2016-04, Vol.16 (4), p.2328-2333 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_1781153041 |
source | ACS Publications |
title | Energy Transfer from Quantum Dots to Graphene and MoS2: The Role of Absorption and Screening in Two-Dimensional Materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A59%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20Transfer%20from%20Quantum%20Dots%20to%20Graphene%20and%20MoS2:%20The%20Role%20of%20Absorption%20and%20Screening%20in%20Two-Dimensional%20Materials&rft.jtitle=Nano%20letters&rft.au=Raja,%20Archana&rft.date=2016-04-13&rft.volume=16&rft.issue=4&rft.spage=2328&rft.epage=2333&rft.pages=2328-2333&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.5b05012&rft_dat=%3Cproquest_pubme%3E1781153041%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1781153041&rft_id=info:pmid/26928675&rfr_iscdi=true |