Energy Transfer from Quantum Dots to Graphene and MoS2: The Role of Absorption and Screening in Two-Dimensional Materials

We report efficient nonradiative energy transfer (NRET) from core–shell, semiconducting quantum dots to adjacent two-dimensional sheets of graphene and MoS2 of single- and few-layer thickness. We observe quenching of the photoluminescence (PL) from individual quantum dots and enhanced PL decay rates...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2016-04, Vol.16 (4), p.2328-2333
Hauptverfasser: Raja, Archana, Montoya−Castillo, Andrés, Zultak, Johanna, Zhang, Xiao-Xiao, Ye, Ziliang, Roquelet, Cyrielle, Chenet, Daniel A, van der Zande, Arend M, Huang, Pinshane, Jockusch, Steffen, Hone, James, Reichman, David R, Brus, Louis E, Heinz, Tony F
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2333
container_issue 4
container_start_page 2328
container_title Nano letters
container_volume 16
creator Raja, Archana
Montoya−Castillo, Andrés
Zultak, Johanna
Zhang, Xiao-Xiao
Ye, Ziliang
Roquelet, Cyrielle
Chenet, Daniel A
van der Zande, Arend M
Huang, Pinshane
Jockusch, Steffen
Hone, James
Reichman, David R
Brus, Louis E
Heinz, Tony F
description We report efficient nonradiative energy transfer (NRET) from core–shell, semiconducting quantum dots to adjacent two-dimensional sheets of graphene and MoS2 of single- and few-layer thickness. We observe quenching of the photoluminescence (PL) from individual quantum dots and enhanced PL decay rates in time-resolved PL, corresponding to energy transfer rates of 1–10 ns–1. Our measurements reveal contrasting trends in the NRET rate from the quantum dot to the van der Waals material as a function of thickness. The rate increases significantly with increasing layer thickness of graphene, but decreases with increasing thickness of MoS2 layers. A classical electromagnetic theory accounts for both the trends and absolute rates observed for the NRET. The countervailing trends arise from the competition between screening and absorption of the electric field of the quantum dot dipole inside the acceptor layers. We extend our analysis to predict the type of NRET behavior for the near-field coupling of a chromophore to a range of semiconducting and metallic thin film materials.
doi_str_mv 10.1021/acs.nanolett.5b05012
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1781153041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1781153041</sourcerecordid><originalsourceid>FETCH-LOGICAL-a318t-9756f784aeb7dd792fd60ba61c5e716b5ec6b92d6c2942b554bb61c40b1985963</originalsourceid><addsrcrecordid>eNo9kUFPwzAMhSMEgjH4BwjlyKUjSZu04Ya2MZA2IWCcq6R1oahNRpIK7d-TweBky--TLb-H0AUlE0oYvVaVnxhlbAchTLgmnFB2gEaUpyQRUrLD_77ITtCp9x-EEJlycoxOmJCsEDkfoe3cgHvb4rVTxjfgcONsj58GZcLQ45kNHgeLF05t3sEAVqbGK_vCbvD6HfBzPI5tg2-1t24TWmt-gJfKAZjWvOHW4PWXTWZtD8ZHWXV4pQK4VnX-DB01scD5vo7R6918Pb1Plo-Lh-ntMlEpLUIicy6avMgU6Lyuc8maWhCtBK045FRoDpXQktWiYjJjmvNM6yhmRFNZcCnSMbr63btx9nMAH8q-9RV0nTJgB1_SvKA7ozIa0cs9Ouge6nLj2l65bflnVwTILxDNLz_s4OJHcQMpd4mUu-FfIuU-kfQb92B_yQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781153041</pqid></control><display><type>article</type><title>Energy Transfer from Quantum Dots to Graphene and MoS2: The Role of Absorption and Screening in Two-Dimensional Materials</title><source>ACS Publications</source><creator>Raja, Archana ; Montoya−Castillo, Andrés ; Zultak, Johanna ; Zhang, Xiao-Xiao ; Ye, Ziliang ; Roquelet, Cyrielle ; Chenet, Daniel A ; van der Zande, Arend M ; Huang, Pinshane ; Jockusch, Steffen ; Hone, James ; Reichman, David R ; Brus, Louis E ; Heinz, Tony F</creator><creatorcontrib>Raja, Archana ; Montoya−Castillo, Andrés ; Zultak, Johanna ; Zhang, Xiao-Xiao ; Ye, Ziliang ; Roquelet, Cyrielle ; Chenet, Daniel A ; van der Zande, Arend M ; Huang, Pinshane ; Jockusch, Steffen ; Hone, James ; Reichman, David R ; Brus, Louis E ; Heinz, Tony F</creatorcontrib><description>We report efficient nonradiative energy transfer (NRET) from core–shell, semiconducting quantum dots to adjacent two-dimensional sheets of graphene and MoS2 of single- and few-layer thickness. We observe quenching of the photoluminescence (PL) from individual quantum dots and enhanced PL decay rates in time-resolved PL, corresponding to energy transfer rates of 1–10 ns–1. Our measurements reveal contrasting trends in the NRET rate from the quantum dot to the van der Waals material as a function of thickness. The rate increases significantly with increasing layer thickness of graphene, but decreases with increasing thickness of MoS2 layers. A classical electromagnetic theory accounts for both the trends and absolute rates observed for the NRET. The countervailing trends arise from the competition between screening and absorption of the electric field of the quantum dot dipole inside the acceptor layers. We extend our analysis to predict the type of NRET behavior for the near-field coupling of a chromophore to a range of semiconducting and metallic thin film materials.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.5b05012</identifier><identifier>PMID: 26928675</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2016-04, Vol.16 (4), p.2328-2333</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5b05012$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.5b05012$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26928675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Raja, Archana</creatorcontrib><creatorcontrib>Montoya−Castillo, Andrés</creatorcontrib><creatorcontrib>Zultak, Johanna</creatorcontrib><creatorcontrib>Zhang, Xiao-Xiao</creatorcontrib><creatorcontrib>Ye, Ziliang</creatorcontrib><creatorcontrib>Roquelet, Cyrielle</creatorcontrib><creatorcontrib>Chenet, Daniel A</creatorcontrib><creatorcontrib>van der Zande, Arend M</creatorcontrib><creatorcontrib>Huang, Pinshane</creatorcontrib><creatorcontrib>Jockusch, Steffen</creatorcontrib><creatorcontrib>Hone, James</creatorcontrib><creatorcontrib>Reichman, David R</creatorcontrib><creatorcontrib>Brus, Louis E</creatorcontrib><creatorcontrib>Heinz, Tony F</creatorcontrib><title>Energy Transfer from Quantum Dots to Graphene and MoS2: The Role of Absorption and Screening in Two-Dimensional Materials</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We report efficient nonradiative energy transfer (NRET) from core–shell, semiconducting quantum dots to adjacent two-dimensional sheets of graphene and MoS2 of single- and few-layer thickness. We observe quenching of the photoluminescence (PL) from individual quantum dots and enhanced PL decay rates in time-resolved PL, corresponding to energy transfer rates of 1–10 ns–1. Our measurements reveal contrasting trends in the NRET rate from the quantum dot to the van der Waals material as a function of thickness. The rate increases significantly with increasing layer thickness of graphene, but decreases with increasing thickness of MoS2 layers. A classical electromagnetic theory accounts for both the trends and absolute rates observed for the NRET. The countervailing trends arise from the competition between screening and absorption of the electric field of the quantum dot dipole inside the acceptor layers. We extend our analysis to predict the type of NRET behavior for the near-field coupling of a chromophore to a range of semiconducting and metallic thin film materials.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kUFPwzAMhSMEgjH4BwjlyKUjSZu04Ya2MZA2IWCcq6R1oahNRpIK7d-TweBky--TLb-H0AUlE0oYvVaVnxhlbAchTLgmnFB2gEaUpyQRUrLD_77ITtCp9x-EEJlycoxOmJCsEDkfoe3cgHvb4rVTxjfgcONsj58GZcLQ45kNHgeLF05t3sEAVqbGK_vCbvD6HfBzPI5tg2-1t24TWmt-gJfKAZjWvOHW4PWXTWZtD8ZHWXV4pQK4VnX-DB01scD5vo7R6918Pb1Plo-Lh-ntMlEpLUIicy6avMgU6Lyuc8maWhCtBK045FRoDpXQktWiYjJjmvNM6yhmRFNZcCnSMbr63btx9nMAH8q-9RV0nTJgB1_SvKA7ozIa0cs9Ouge6nLj2l65bflnVwTILxDNLz_s4OJHcQMpd4mUu-FfIuU-kfQb92B_yQ</recordid><startdate>20160413</startdate><enddate>20160413</enddate><creator>Raja, Archana</creator><creator>Montoya−Castillo, Andrés</creator><creator>Zultak, Johanna</creator><creator>Zhang, Xiao-Xiao</creator><creator>Ye, Ziliang</creator><creator>Roquelet, Cyrielle</creator><creator>Chenet, Daniel A</creator><creator>van der Zande, Arend M</creator><creator>Huang, Pinshane</creator><creator>Jockusch, Steffen</creator><creator>Hone, James</creator><creator>Reichman, David R</creator><creator>Brus, Louis E</creator><creator>Heinz, Tony F</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20160413</creationdate><title>Energy Transfer from Quantum Dots to Graphene and MoS2: The Role of Absorption and Screening in Two-Dimensional Materials</title><author>Raja, Archana ; Montoya−Castillo, Andrés ; Zultak, Johanna ; Zhang, Xiao-Xiao ; Ye, Ziliang ; Roquelet, Cyrielle ; Chenet, Daniel A ; van der Zande, Arend M ; Huang, Pinshane ; Jockusch, Steffen ; Hone, James ; Reichman, David R ; Brus, Louis E ; Heinz, Tony F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a318t-9756f784aeb7dd792fd60ba61c5e716b5ec6b92d6c2942b554bb61c40b1985963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raja, Archana</creatorcontrib><creatorcontrib>Montoya−Castillo, Andrés</creatorcontrib><creatorcontrib>Zultak, Johanna</creatorcontrib><creatorcontrib>Zhang, Xiao-Xiao</creatorcontrib><creatorcontrib>Ye, Ziliang</creatorcontrib><creatorcontrib>Roquelet, Cyrielle</creatorcontrib><creatorcontrib>Chenet, Daniel A</creatorcontrib><creatorcontrib>van der Zande, Arend M</creatorcontrib><creatorcontrib>Huang, Pinshane</creatorcontrib><creatorcontrib>Jockusch, Steffen</creatorcontrib><creatorcontrib>Hone, James</creatorcontrib><creatorcontrib>Reichman, David R</creatorcontrib><creatorcontrib>Brus, Louis E</creatorcontrib><creatorcontrib>Heinz, Tony F</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raja, Archana</au><au>Montoya−Castillo, Andrés</au><au>Zultak, Johanna</au><au>Zhang, Xiao-Xiao</au><au>Ye, Ziliang</au><au>Roquelet, Cyrielle</au><au>Chenet, Daniel A</au><au>van der Zande, Arend M</au><au>Huang, Pinshane</au><au>Jockusch, Steffen</au><au>Hone, James</au><au>Reichman, David R</au><au>Brus, Louis E</au><au>Heinz, Tony F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy Transfer from Quantum Dots to Graphene and MoS2: The Role of Absorption and Screening in Two-Dimensional Materials</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2016-04-13</date><risdate>2016</risdate><volume>16</volume><issue>4</issue><spage>2328</spage><epage>2333</epage><pages>2328-2333</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We report efficient nonradiative energy transfer (NRET) from core–shell, semiconducting quantum dots to adjacent two-dimensional sheets of graphene and MoS2 of single- and few-layer thickness. We observe quenching of the photoluminescence (PL) from individual quantum dots and enhanced PL decay rates in time-resolved PL, corresponding to energy transfer rates of 1–10 ns–1. Our measurements reveal contrasting trends in the NRET rate from the quantum dot to the van der Waals material as a function of thickness. The rate increases significantly with increasing layer thickness of graphene, but decreases with increasing thickness of MoS2 layers. A classical electromagnetic theory accounts for both the trends and absolute rates observed for the NRET. The countervailing trends arise from the competition between screening and absorption of the electric field of the quantum dot dipole inside the acceptor layers. We extend our analysis to predict the type of NRET behavior for the near-field coupling of a chromophore to a range of semiconducting and metallic thin film materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26928675</pmid><doi>10.1021/acs.nanolett.5b05012</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2016-04, Vol.16 (4), p.2328-2333
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1781153041
source ACS Publications
title Energy Transfer from Quantum Dots to Graphene and MoS2: The Role of Absorption and Screening in Two-Dimensional Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A59%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20Transfer%20from%20Quantum%20Dots%20to%20Graphene%20and%20MoS2:%20The%20Role%20of%20Absorption%20and%20Screening%20in%20Two-Dimensional%20Materials&rft.jtitle=Nano%20letters&rft.au=Raja,%20Archana&rft.date=2016-04-13&rft.volume=16&rft.issue=4&rft.spage=2328&rft.epage=2333&rft.pages=2328-2333&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.5b05012&rft_dat=%3Cproquest_pubme%3E1781153041%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1781153041&rft_id=info:pmid/26928675&rfr_iscdi=true