Relapsing diabetes can result from moderately activating mutations in KCNJ11
Neonatal diabetes can either remit and hence be transient or else may be permanent. These two phenotypes were considered to be genetically distinct. Abnormalities of 6q24 are the commonest cause of transient neonatal diabetes (TNDM). Mutations in KCNJ11, which encodes Kir6.2, the pore-forming subuni...
Gespeichert in:
Veröffentlicht in: | Human molecular genetics 2005-04, Vol.14 (7), p.925-934 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 934 |
---|---|
container_issue | 7 |
container_start_page | 925 |
container_title | Human molecular genetics |
container_volume | 14 |
creator | Gloyn, Anna L. Reimann, Frank Girard, Christophe Edghill, Emma L. Proks, Peter Pearson, Ewan R. Temple, I. Karen Mackay, Deborah J.G. Shield, Julian P.H. Freedenberg, Debra Noyes, Kathryn Ellard, Sian Ashcroft, Frances M. Gribble, Fiona M. Hattersley, Andrew T. |
description | Neonatal diabetes can either remit and hence be transient or else may be permanent. These two phenotypes were considered to be genetically distinct. Abnormalities of 6q24 are the commonest cause of transient neonatal diabetes (TNDM). Mutations in KCNJ11, which encodes Kir6.2, the pore-forming subunit of the ATP-sensitive potassium channel (KATP), are the commonest cause of permanent neonatal diabetes (PNDM). In addition to diabetes, some KCNJ11 mutations also result in marked developmental delay and epilepsy. These mutations are more severe on functional characterization. We investigated whether mutations in KCNJ11 could also give rise to TNDM. We identified the three novel heterozygous mutations (G53S, G53R, I182V) in three of 11 probands with clinically defined TNDM, who did not have chromosome 6q24 abnormalities. The mutations co-segregated with diabetes within families and were not found in 100 controls. All probands had insulin-treated diabetes diagnosed in the first 4 months and went into remission by 7–14 months. Functional characterization of the TNDM associated mutations was performed by expressing the mutated Kir6.2 with SUR1 in Xenopus laevis oocytes. All three heterozygous mutations resulted in a reduction in the sensitivity to ATP when compared with wild-type (IC50∼30 versus ∼7 µM, P-value for is all |
doi_str_mv | 10.1093/hmg/ddi086 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17806596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>821711191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-a52e0bf9cb7a039dbaae89a859078b08163d47388097c4b7207c072383abfffe3</originalsourceid><addsrcrecordid>eNpd0F1LHDEUBuAgFV2tN_0BZSjoRWHqSTKTj0tZdbd2aUuptPQmnMlkbOx8rElG6r_vLLtU8OocOA8vh5eQNxQ-UND8_Hd3d17XHpTYIzNaCMgZKP6KzECLIhcaxCE5ivEegIqCywNySEtJFSthRlbfXIvr6Pu7rPZYueRiZrHPgotjm7ImDF3WDbULmFz7lKFN_hHThndjmpahj5nvs0_zzzeUvib7DbbRnezmMbm9vvo-X-arL4uP84tVbotCphxL5qBqtK0kAtd1heiURlVqkKoCRQWvC8mVAi1tUUkG0oJkXHGsmqZx_JicbXPXYXgYXUym89G6tsXeDWM0VCoQpRYTfPcC3g9j6KffDKOUAwO2Qe-3yIYhxuAasw6-w_BkKJhNwWYq2GwLnvDbXeJYda5-prtGJ3C6Axgttk3A3vr47ISkgjI6uXzrfEzu7_87hj9GSC5Ls_z5y1xe_1is6GJpvvJ_pAKSLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211302026</pqid></control><display><type>article</type><title>Relapsing diabetes can result from moderately activating mutations in KCNJ11</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gloyn, Anna L. ; Reimann, Frank ; Girard, Christophe ; Edghill, Emma L. ; Proks, Peter ; Pearson, Ewan R. ; Temple, I. Karen ; Mackay, Deborah J.G. ; Shield, Julian P.H. ; Freedenberg, Debra ; Noyes, Kathryn ; Ellard, Sian ; Ashcroft, Frances M. ; Gribble, Fiona M. ; Hattersley, Andrew T.</creator><creatorcontrib>Gloyn, Anna L. ; Reimann, Frank ; Girard, Christophe ; Edghill, Emma L. ; Proks, Peter ; Pearson, Ewan R. ; Temple, I. Karen ; Mackay, Deborah J.G. ; Shield, Julian P.H. ; Freedenberg, Debra ; Noyes, Kathryn ; Ellard, Sian ; Ashcroft, Frances M. ; Gribble, Fiona M. ; Hattersley, Andrew T.</creatorcontrib><description>Neonatal diabetes can either remit and hence be transient or else may be permanent. These two phenotypes were considered to be genetically distinct. Abnormalities of 6q24 are the commonest cause of transient neonatal diabetes (TNDM). Mutations in KCNJ11, which encodes Kir6.2, the pore-forming subunit of the ATP-sensitive potassium channel (KATP), are the commonest cause of permanent neonatal diabetes (PNDM). In addition to diabetes, some KCNJ11 mutations also result in marked developmental delay and epilepsy. These mutations are more severe on functional characterization. We investigated whether mutations in KCNJ11 could also give rise to TNDM. We identified the three novel heterozygous mutations (G53S, G53R, I182V) in three of 11 probands with clinically defined TNDM, who did not have chromosome 6q24 abnormalities. The mutations co-segregated with diabetes within families and were not found in 100 controls. All probands had insulin-treated diabetes diagnosed in the first 4 months and went into remission by 7–14 months. Functional characterization of the TNDM associated mutations was performed by expressing the mutated Kir6.2 with SUR1 in Xenopus laevis oocytes. All three heterozygous mutations resulted in a reduction in the sensitivity to ATP when compared with wild-type (IC50∼30 versus ∼7 µM, P-value for is all <0.01); however, this was less profoundly reduced than with the PNDM associated mutations. In conclusion, mutations in KCNJ11 are the first genetic cause for remitting as well as permanent diabetes. This suggests that a fixed ion channel abnormality can result in a fluctuating glycaemic phenotype. The multiple phenotypes associated with activating KCNJ11 mutations may reflect their severity in vitro.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/ddi086</identifier><identifier>PMID: 15718250</identifier><identifier>CODEN: HNGEE5</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Adenosine Triphosphate - chemistry ; Adult ; Animals ; ATP-Binding Cassette Transporters ; Biological and medical sciences ; Child, Preschool ; Chromosomes, Human, Pair 6 ; Diabetes Mellitus - genetics ; Diabetes. Impaired glucose tolerance ; DNA Mutational Analysis ; Dose-Response Relationship, Drug ; Electrophysiology ; Endocrine pancreas. Apud cells (diseases) ; Endocrinopathies ; Etiopathogenesis. Screening. Investigations. Target tissue resistance ; Female ; Fundamental and applied biological sciences. Psychology ; Genetics of eukaryotes. Biological and molecular evolution ; Heterozygote ; Homozygote ; Humans ; Infant ; Infant, Newborn ; Inhibitory Concentration 50 ; Male ; Medical sciences ; Models, Molecular ; Molecular and cellular biology ; Mutation ; Oocytes - metabolism ; Pedigree ; Phenotype ; Potassium Channels - genetics ; Potassium Channels, Inwardly Rectifying - genetics ; Rats ; Receptors, Drug ; Recurrence ; Sulfonylurea Receptors ; Xenopus laevis</subject><ispartof>Human molecular genetics, 2005-04, Vol.14 (7), p.925-934</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Apr 1, 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-a52e0bf9cb7a039dbaae89a859078b08163d47388097c4b7207c072383abfffe3</citedby><cites>FETCH-LOGICAL-c447t-a52e0bf9cb7a039dbaae89a859078b08163d47388097c4b7207c072383abfffe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16716121$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15718250$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gloyn, Anna L.</creatorcontrib><creatorcontrib>Reimann, Frank</creatorcontrib><creatorcontrib>Girard, Christophe</creatorcontrib><creatorcontrib>Edghill, Emma L.</creatorcontrib><creatorcontrib>Proks, Peter</creatorcontrib><creatorcontrib>Pearson, Ewan R.</creatorcontrib><creatorcontrib>Temple, I. Karen</creatorcontrib><creatorcontrib>Mackay, Deborah J.G.</creatorcontrib><creatorcontrib>Shield, Julian P.H.</creatorcontrib><creatorcontrib>Freedenberg, Debra</creatorcontrib><creatorcontrib>Noyes, Kathryn</creatorcontrib><creatorcontrib>Ellard, Sian</creatorcontrib><creatorcontrib>Ashcroft, Frances M.</creatorcontrib><creatorcontrib>Gribble, Fiona M.</creatorcontrib><creatorcontrib>Hattersley, Andrew T.</creatorcontrib><title>Relapsing diabetes can result from moderately activating mutations in KCNJ11</title><title>Human molecular genetics</title><addtitle>Hum. Mol. Genet</addtitle><description>Neonatal diabetes can either remit and hence be transient or else may be permanent. These two phenotypes were considered to be genetically distinct. Abnormalities of 6q24 are the commonest cause of transient neonatal diabetes (TNDM). Mutations in KCNJ11, which encodes Kir6.2, the pore-forming subunit of the ATP-sensitive potassium channel (KATP), are the commonest cause of permanent neonatal diabetes (PNDM). In addition to diabetes, some KCNJ11 mutations also result in marked developmental delay and epilepsy. These mutations are more severe on functional characterization. We investigated whether mutations in KCNJ11 could also give rise to TNDM. We identified the three novel heterozygous mutations (G53S, G53R, I182V) in three of 11 probands with clinically defined TNDM, who did not have chromosome 6q24 abnormalities. The mutations co-segregated with diabetes within families and were not found in 100 controls. All probands had insulin-treated diabetes diagnosed in the first 4 months and went into remission by 7–14 months. Functional characterization of the TNDM associated mutations was performed by expressing the mutated Kir6.2 with SUR1 in Xenopus laevis oocytes. All three heterozygous mutations resulted in a reduction in the sensitivity to ATP when compared with wild-type (IC50∼30 versus ∼7 µM, P-value for is all <0.01); however, this was less profoundly reduced than with the PNDM associated mutations. In conclusion, mutations in KCNJ11 are the first genetic cause for remitting as well as permanent diabetes. This suggests that a fixed ion channel abnormality can result in a fluctuating glycaemic phenotype. The multiple phenotypes associated with activating KCNJ11 mutations may reflect their severity in vitro.</description><subject>Adenosine Triphosphate - chemistry</subject><subject>Adult</subject><subject>Animals</subject><subject>ATP-Binding Cassette Transporters</subject><subject>Biological and medical sciences</subject><subject>Child, Preschool</subject><subject>Chromosomes, Human, Pair 6</subject><subject>Diabetes Mellitus - genetics</subject><subject>Diabetes. Impaired glucose tolerance</subject><subject>DNA Mutational Analysis</subject><subject>Dose-Response Relationship, Drug</subject><subject>Electrophysiology</subject><subject>Endocrine pancreas. Apud cells (diseases)</subject><subject>Endocrinopathies</subject><subject>Etiopathogenesis. Screening. Investigations. Target tissue resistance</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Heterozygote</subject><subject>Homozygote</subject><subject>Humans</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Inhibitory Concentration 50</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Models, Molecular</subject><subject>Molecular and cellular biology</subject><subject>Mutation</subject><subject>Oocytes - metabolism</subject><subject>Pedigree</subject><subject>Phenotype</subject><subject>Potassium Channels - genetics</subject><subject>Potassium Channels, Inwardly Rectifying - genetics</subject><subject>Rats</subject><subject>Receptors, Drug</subject><subject>Recurrence</subject><subject>Sulfonylurea Receptors</subject><subject>Xenopus laevis</subject><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0F1LHDEUBuAgFV2tN_0BZSjoRWHqSTKTj0tZdbd2aUuptPQmnMlkbOx8rElG6r_vLLtU8OocOA8vh5eQNxQ-UND8_Hd3d17XHpTYIzNaCMgZKP6KzECLIhcaxCE5ivEegIqCywNySEtJFSthRlbfXIvr6Pu7rPZYueRiZrHPgotjm7ImDF3WDbULmFz7lKFN_hHThndjmpahj5nvs0_zzzeUvib7DbbRnezmMbm9vvo-X-arL4uP84tVbotCphxL5qBqtK0kAtd1heiURlVqkKoCRQWvC8mVAi1tUUkG0oJkXHGsmqZx_JicbXPXYXgYXUym89G6tsXeDWM0VCoQpRYTfPcC3g9j6KffDKOUAwO2Qe-3yIYhxuAasw6-w_BkKJhNwWYq2GwLnvDbXeJYda5-prtGJ3C6Axgttk3A3vr47ISkgjI6uXzrfEzu7_87hj9GSC5Ls_z5y1xe_1is6GJpvvJ_pAKSLg</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Gloyn, Anna L.</creator><creator>Reimann, Frank</creator><creator>Girard, Christophe</creator><creator>Edghill, Emma L.</creator><creator>Proks, Peter</creator><creator>Pearson, Ewan R.</creator><creator>Temple, I. Karen</creator><creator>Mackay, Deborah J.G.</creator><creator>Shield, Julian P.H.</creator><creator>Freedenberg, Debra</creator><creator>Noyes, Kathryn</creator><creator>Ellard, Sian</creator><creator>Ashcroft, Frances M.</creator><creator>Gribble, Fiona M.</creator><creator>Hattersley, Andrew T.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20050401</creationdate><title>Relapsing diabetes can result from moderately activating mutations in KCNJ11</title><author>Gloyn, Anna L. ; Reimann, Frank ; Girard, Christophe ; Edghill, Emma L. ; Proks, Peter ; Pearson, Ewan R. ; Temple, I. Karen ; Mackay, Deborah J.G. ; Shield, Julian P.H. ; Freedenberg, Debra ; Noyes, Kathryn ; Ellard, Sian ; Ashcroft, Frances M. ; Gribble, Fiona M. ; Hattersley, Andrew T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-a52e0bf9cb7a039dbaae89a859078b08163d47388097c4b7207c072383abfffe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adenosine Triphosphate - chemistry</topic><topic>Adult</topic><topic>Animals</topic><topic>ATP-Binding Cassette Transporters</topic><topic>Biological and medical sciences</topic><topic>Child, Preschool</topic><topic>Chromosomes, Human, Pair 6</topic><topic>Diabetes Mellitus - genetics</topic><topic>Diabetes. Impaired glucose tolerance</topic><topic>DNA Mutational Analysis</topic><topic>Dose-Response Relationship, Drug</topic><topic>Electrophysiology</topic><topic>Endocrine pancreas. Apud cells (diseases)</topic><topic>Endocrinopathies</topic><topic>Etiopathogenesis. Screening. Investigations. Target tissue resistance</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Heterozygote</topic><topic>Homozygote</topic><topic>Humans</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Inhibitory Concentration 50</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Models, Molecular</topic><topic>Molecular and cellular biology</topic><topic>Mutation</topic><topic>Oocytes - metabolism</topic><topic>Pedigree</topic><topic>Phenotype</topic><topic>Potassium Channels - genetics</topic><topic>Potassium Channels, Inwardly Rectifying - genetics</topic><topic>Rats</topic><topic>Receptors, Drug</topic><topic>Recurrence</topic><topic>Sulfonylurea Receptors</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gloyn, Anna L.</creatorcontrib><creatorcontrib>Reimann, Frank</creatorcontrib><creatorcontrib>Girard, Christophe</creatorcontrib><creatorcontrib>Edghill, Emma L.</creatorcontrib><creatorcontrib>Proks, Peter</creatorcontrib><creatorcontrib>Pearson, Ewan R.</creatorcontrib><creatorcontrib>Temple, I. Karen</creatorcontrib><creatorcontrib>Mackay, Deborah J.G.</creatorcontrib><creatorcontrib>Shield, Julian P.H.</creatorcontrib><creatorcontrib>Freedenberg, Debra</creatorcontrib><creatorcontrib>Noyes, Kathryn</creatorcontrib><creatorcontrib>Ellard, Sian</creatorcontrib><creatorcontrib>Ashcroft, Frances M.</creatorcontrib><creatorcontrib>Gribble, Fiona M.</creatorcontrib><creatorcontrib>Hattersley, Andrew T.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gloyn, Anna L.</au><au>Reimann, Frank</au><au>Girard, Christophe</au><au>Edghill, Emma L.</au><au>Proks, Peter</au><au>Pearson, Ewan R.</au><au>Temple, I. Karen</au><au>Mackay, Deborah J.G.</au><au>Shield, Julian P.H.</au><au>Freedenberg, Debra</au><au>Noyes, Kathryn</au><au>Ellard, Sian</au><au>Ashcroft, Frances M.</au><au>Gribble, Fiona M.</au><au>Hattersley, Andrew T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relapsing diabetes can result from moderately activating mutations in KCNJ11</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum. Mol. Genet</addtitle><date>2005-04-01</date><risdate>2005</risdate><volume>14</volume><issue>7</issue><spage>925</spage><epage>934</epage><pages>925-934</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><coden>HNGEE5</coden><abstract>Neonatal diabetes can either remit and hence be transient or else may be permanent. These two phenotypes were considered to be genetically distinct. Abnormalities of 6q24 are the commonest cause of transient neonatal diabetes (TNDM). Mutations in KCNJ11, which encodes Kir6.2, the pore-forming subunit of the ATP-sensitive potassium channel (KATP), are the commonest cause of permanent neonatal diabetes (PNDM). In addition to diabetes, some KCNJ11 mutations also result in marked developmental delay and epilepsy. These mutations are more severe on functional characterization. We investigated whether mutations in KCNJ11 could also give rise to TNDM. We identified the three novel heterozygous mutations (G53S, G53R, I182V) in three of 11 probands with clinically defined TNDM, who did not have chromosome 6q24 abnormalities. The mutations co-segregated with diabetes within families and were not found in 100 controls. All probands had insulin-treated diabetes diagnosed in the first 4 months and went into remission by 7–14 months. Functional characterization of the TNDM associated mutations was performed by expressing the mutated Kir6.2 with SUR1 in Xenopus laevis oocytes. All three heterozygous mutations resulted in a reduction in the sensitivity to ATP when compared with wild-type (IC50∼30 versus ∼7 µM, P-value for is all <0.01); however, this was less profoundly reduced than with the PNDM associated mutations. In conclusion, mutations in KCNJ11 are the first genetic cause for remitting as well as permanent diabetes. This suggests that a fixed ion channel abnormality can result in a fluctuating glycaemic phenotype. The multiple phenotypes associated with activating KCNJ11 mutations may reflect their severity in vitro.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>15718250</pmid><doi>10.1093/hmg/ddi086</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-6906 |
ispartof | Human molecular genetics, 2005-04, Vol.14 (7), p.925-934 |
issn | 0964-6906 1460-2083 |
language | eng |
recordid | cdi_proquest_miscellaneous_17806596 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adenosine Triphosphate - chemistry Adult Animals ATP-Binding Cassette Transporters Biological and medical sciences Child, Preschool Chromosomes, Human, Pair 6 Diabetes Mellitus - genetics Diabetes. Impaired glucose tolerance DNA Mutational Analysis Dose-Response Relationship, Drug Electrophysiology Endocrine pancreas. Apud cells (diseases) Endocrinopathies Etiopathogenesis. Screening. Investigations. Target tissue resistance Female Fundamental and applied biological sciences. Psychology Genetics of eukaryotes. Biological and molecular evolution Heterozygote Homozygote Humans Infant Infant, Newborn Inhibitory Concentration 50 Male Medical sciences Models, Molecular Molecular and cellular biology Mutation Oocytes - metabolism Pedigree Phenotype Potassium Channels - genetics Potassium Channels, Inwardly Rectifying - genetics Rats Receptors, Drug Recurrence Sulfonylurea Receptors Xenopus laevis |
title | Relapsing diabetes can result from moderately activating mutations in KCNJ11 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A39%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relapsing%20diabetes%20can%20result%20from%20moderately%20activating%20mutations%20in%20KCNJ11&rft.jtitle=Human%20molecular%20genetics&rft.au=Gloyn,%20Anna%20L.&rft.date=2005-04-01&rft.volume=14&rft.issue=7&rft.spage=925&rft.epage=934&rft.pages=925-934&rft.issn=0964-6906&rft.eissn=1460-2083&rft.coden=HNGEE5&rft_id=info:doi/10.1093/hmg/ddi086&rft_dat=%3Cproquest_cross%3E821711191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211302026&rft_id=info:pmid/15718250&rfr_iscdi=true |