Relapsing diabetes can result from moderately activating mutations in KCNJ11

Neonatal diabetes can either remit and hence be transient or else may be permanent. These two phenotypes were considered to be genetically distinct. Abnormalities of 6q24 are the commonest cause of transient neonatal diabetes (TNDM). Mutations in KCNJ11, which encodes Kir6.2, the pore-forming subuni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human molecular genetics 2005-04, Vol.14 (7), p.925-934
Hauptverfasser: Gloyn, Anna L., Reimann, Frank, Girard, Christophe, Edghill, Emma L., Proks, Peter, Pearson, Ewan R., Temple, I. Karen, Mackay, Deborah J.G., Shield, Julian P.H., Freedenberg, Debra, Noyes, Kathryn, Ellard, Sian, Ashcroft, Frances M., Gribble, Fiona M., Hattersley, Andrew T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 934
container_issue 7
container_start_page 925
container_title Human molecular genetics
container_volume 14
creator Gloyn, Anna L.
Reimann, Frank
Girard, Christophe
Edghill, Emma L.
Proks, Peter
Pearson, Ewan R.
Temple, I. Karen
Mackay, Deborah J.G.
Shield, Julian P.H.
Freedenberg, Debra
Noyes, Kathryn
Ellard, Sian
Ashcroft, Frances M.
Gribble, Fiona M.
Hattersley, Andrew T.
description Neonatal diabetes can either remit and hence be transient or else may be permanent. These two phenotypes were considered to be genetically distinct. Abnormalities of 6q24 are the commonest cause of transient neonatal diabetes (TNDM). Mutations in KCNJ11, which encodes Kir6.2, the pore-forming subunit of the ATP-sensitive potassium channel (KATP), are the commonest cause of permanent neonatal diabetes (PNDM). In addition to diabetes, some KCNJ11 mutations also result in marked developmental delay and epilepsy. These mutations are more severe on functional characterization. We investigated whether mutations in KCNJ11 could also give rise to TNDM. We identified the three novel heterozygous mutations (G53S, G53R, I182V) in three of 11 probands with clinically defined TNDM, who did not have chromosome 6q24 abnormalities. The mutations co-segregated with diabetes within families and were not found in 100 controls. All probands had insulin-treated diabetes diagnosed in the first 4 months and went into remission by 7–14 months. Functional characterization of the TNDM associated mutations was performed by expressing the mutated Kir6.2 with SUR1 in Xenopus laevis oocytes. All three heterozygous mutations resulted in a reduction in the sensitivity to ATP when compared with wild-type (IC50∼30 versus ∼7 µM, P-value for is all
doi_str_mv 10.1093/hmg/ddi086
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17806596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>821711191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-a52e0bf9cb7a039dbaae89a859078b08163d47388097c4b7207c072383abfffe3</originalsourceid><addsrcrecordid>eNpd0F1LHDEUBuAgFV2tN_0BZSjoRWHqSTKTj0tZdbd2aUuptPQmnMlkbOx8rElG6r_vLLtU8OocOA8vh5eQNxQ-UND8_Hd3d17XHpTYIzNaCMgZKP6KzECLIhcaxCE5ivEegIqCywNySEtJFSthRlbfXIvr6Pu7rPZYueRiZrHPgotjm7ImDF3WDbULmFz7lKFN_hHThndjmpahj5nvs0_zzzeUvib7DbbRnezmMbm9vvo-X-arL4uP84tVbotCphxL5qBqtK0kAtd1heiURlVqkKoCRQWvC8mVAi1tUUkG0oJkXHGsmqZx_JicbXPXYXgYXUym89G6tsXeDWM0VCoQpRYTfPcC3g9j6KffDKOUAwO2Qe-3yIYhxuAasw6-w_BkKJhNwWYq2GwLnvDbXeJYda5-prtGJ3C6Axgttk3A3vr47ISkgjI6uXzrfEzu7_87hj9GSC5Ls_z5y1xe_1is6GJpvvJ_pAKSLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211302026</pqid></control><display><type>article</type><title>Relapsing diabetes can result from moderately activating mutations in KCNJ11</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gloyn, Anna L. ; Reimann, Frank ; Girard, Christophe ; Edghill, Emma L. ; Proks, Peter ; Pearson, Ewan R. ; Temple, I. Karen ; Mackay, Deborah J.G. ; Shield, Julian P.H. ; Freedenberg, Debra ; Noyes, Kathryn ; Ellard, Sian ; Ashcroft, Frances M. ; Gribble, Fiona M. ; Hattersley, Andrew T.</creator><creatorcontrib>Gloyn, Anna L. ; Reimann, Frank ; Girard, Christophe ; Edghill, Emma L. ; Proks, Peter ; Pearson, Ewan R. ; Temple, I. Karen ; Mackay, Deborah J.G. ; Shield, Julian P.H. ; Freedenberg, Debra ; Noyes, Kathryn ; Ellard, Sian ; Ashcroft, Frances M. ; Gribble, Fiona M. ; Hattersley, Andrew T.</creatorcontrib><description>Neonatal diabetes can either remit and hence be transient or else may be permanent. These two phenotypes were considered to be genetically distinct. Abnormalities of 6q24 are the commonest cause of transient neonatal diabetes (TNDM). Mutations in KCNJ11, which encodes Kir6.2, the pore-forming subunit of the ATP-sensitive potassium channel (KATP), are the commonest cause of permanent neonatal diabetes (PNDM). In addition to diabetes, some KCNJ11 mutations also result in marked developmental delay and epilepsy. These mutations are more severe on functional characterization. We investigated whether mutations in KCNJ11 could also give rise to TNDM. We identified the three novel heterozygous mutations (G53S, G53R, I182V) in three of 11 probands with clinically defined TNDM, who did not have chromosome 6q24 abnormalities. The mutations co-segregated with diabetes within families and were not found in 100 controls. All probands had insulin-treated diabetes diagnosed in the first 4 months and went into remission by 7–14 months. Functional characterization of the TNDM associated mutations was performed by expressing the mutated Kir6.2 with SUR1 in Xenopus laevis oocytes. All three heterozygous mutations resulted in a reduction in the sensitivity to ATP when compared with wild-type (IC50∼30 versus ∼7 µM, P-value for is all &lt;0.01); however, this was less profoundly reduced than with the PNDM associated mutations. In conclusion, mutations in KCNJ11 are the first genetic cause for remitting as well as permanent diabetes. This suggests that a fixed ion channel abnormality can result in a fluctuating glycaemic phenotype. The multiple phenotypes associated with activating KCNJ11 mutations may reflect their severity in vitro.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/ddi086</identifier><identifier>PMID: 15718250</identifier><identifier>CODEN: HNGEE5</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Adenosine Triphosphate - chemistry ; Adult ; Animals ; ATP-Binding Cassette Transporters ; Biological and medical sciences ; Child, Preschool ; Chromosomes, Human, Pair 6 ; Diabetes Mellitus - genetics ; Diabetes. Impaired glucose tolerance ; DNA Mutational Analysis ; Dose-Response Relationship, Drug ; Electrophysiology ; Endocrine pancreas. Apud cells (diseases) ; Endocrinopathies ; Etiopathogenesis. Screening. Investigations. Target tissue resistance ; Female ; Fundamental and applied biological sciences. Psychology ; Genetics of eukaryotes. Biological and molecular evolution ; Heterozygote ; Homozygote ; Humans ; Infant ; Infant, Newborn ; Inhibitory Concentration 50 ; Male ; Medical sciences ; Models, Molecular ; Molecular and cellular biology ; Mutation ; Oocytes - metabolism ; Pedigree ; Phenotype ; Potassium Channels - genetics ; Potassium Channels, Inwardly Rectifying - genetics ; Rats ; Receptors, Drug ; Recurrence ; Sulfonylurea Receptors ; Xenopus laevis</subject><ispartof>Human molecular genetics, 2005-04, Vol.14 (7), p.925-934</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Apr 1, 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-a52e0bf9cb7a039dbaae89a859078b08163d47388097c4b7207c072383abfffe3</citedby><cites>FETCH-LOGICAL-c447t-a52e0bf9cb7a039dbaae89a859078b08163d47388097c4b7207c072383abfffe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16716121$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15718250$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gloyn, Anna L.</creatorcontrib><creatorcontrib>Reimann, Frank</creatorcontrib><creatorcontrib>Girard, Christophe</creatorcontrib><creatorcontrib>Edghill, Emma L.</creatorcontrib><creatorcontrib>Proks, Peter</creatorcontrib><creatorcontrib>Pearson, Ewan R.</creatorcontrib><creatorcontrib>Temple, I. Karen</creatorcontrib><creatorcontrib>Mackay, Deborah J.G.</creatorcontrib><creatorcontrib>Shield, Julian P.H.</creatorcontrib><creatorcontrib>Freedenberg, Debra</creatorcontrib><creatorcontrib>Noyes, Kathryn</creatorcontrib><creatorcontrib>Ellard, Sian</creatorcontrib><creatorcontrib>Ashcroft, Frances M.</creatorcontrib><creatorcontrib>Gribble, Fiona M.</creatorcontrib><creatorcontrib>Hattersley, Andrew T.</creatorcontrib><title>Relapsing diabetes can result from moderately activating mutations in KCNJ11</title><title>Human molecular genetics</title><addtitle>Hum. Mol. Genet</addtitle><description>Neonatal diabetes can either remit and hence be transient or else may be permanent. These two phenotypes were considered to be genetically distinct. Abnormalities of 6q24 are the commonest cause of transient neonatal diabetes (TNDM). Mutations in KCNJ11, which encodes Kir6.2, the pore-forming subunit of the ATP-sensitive potassium channel (KATP), are the commonest cause of permanent neonatal diabetes (PNDM). In addition to diabetes, some KCNJ11 mutations also result in marked developmental delay and epilepsy. These mutations are more severe on functional characterization. We investigated whether mutations in KCNJ11 could also give rise to TNDM. We identified the three novel heterozygous mutations (G53S, G53R, I182V) in three of 11 probands with clinically defined TNDM, who did not have chromosome 6q24 abnormalities. The mutations co-segregated with diabetes within families and were not found in 100 controls. All probands had insulin-treated diabetes diagnosed in the first 4 months and went into remission by 7–14 months. Functional characterization of the TNDM associated mutations was performed by expressing the mutated Kir6.2 with SUR1 in Xenopus laevis oocytes. All three heterozygous mutations resulted in a reduction in the sensitivity to ATP when compared with wild-type (IC50∼30 versus ∼7 µM, P-value for is all &lt;0.01); however, this was less profoundly reduced than with the PNDM associated mutations. In conclusion, mutations in KCNJ11 are the first genetic cause for remitting as well as permanent diabetes. This suggests that a fixed ion channel abnormality can result in a fluctuating glycaemic phenotype. The multiple phenotypes associated with activating KCNJ11 mutations may reflect their severity in vitro.</description><subject>Adenosine Triphosphate - chemistry</subject><subject>Adult</subject><subject>Animals</subject><subject>ATP-Binding Cassette Transporters</subject><subject>Biological and medical sciences</subject><subject>Child, Preschool</subject><subject>Chromosomes, Human, Pair 6</subject><subject>Diabetes Mellitus - genetics</subject><subject>Diabetes. Impaired glucose tolerance</subject><subject>DNA Mutational Analysis</subject><subject>Dose-Response Relationship, Drug</subject><subject>Electrophysiology</subject><subject>Endocrine pancreas. Apud cells (diseases)</subject><subject>Endocrinopathies</subject><subject>Etiopathogenesis. Screening. Investigations. Target tissue resistance</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Heterozygote</subject><subject>Homozygote</subject><subject>Humans</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Inhibitory Concentration 50</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Models, Molecular</subject><subject>Molecular and cellular biology</subject><subject>Mutation</subject><subject>Oocytes - metabolism</subject><subject>Pedigree</subject><subject>Phenotype</subject><subject>Potassium Channels - genetics</subject><subject>Potassium Channels, Inwardly Rectifying - genetics</subject><subject>Rats</subject><subject>Receptors, Drug</subject><subject>Recurrence</subject><subject>Sulfonylurea Receptors</subject><subject>Xenopus laevis</subject><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0F1LHDEUBuAgFV2tN_0BZSjoRWHqSTKTj0tZdbd2aUuptPQmnMlkbOx8rElG6r_vLLtU8OocOA8vh5eQNxQ-UND8_Hd3d17XHpTYIzNaCMgZKP6KzECLIhcaxCE5ivEegIqCywNySEtJFSthRlbfXIvr6Pu7rPZYueRiZrHPgotjm7ImDF3WDbULmFz7lKFN_hHThndjmpahj5nvs0_zzzeUvib7DbbRnezmMbm9vvo-X-arL4uP84tVbotCphxL5qBqtK0kAtd1heiURlVqkKoCRQWvC8mVAi1tUUkG0oJkXHGsmqZx_JicbXPXYXgYXUym89G6tsXeDWM0VCoQpRYTfPcC3g9j6KffDKOUAwO2Qe-3yIYhxuAasw6-w_BkKJhNwWYq2GwLnvDbXeJYda5-prtGJ3C6Axgttk3A3vr47ISkgjI6uXzrfEzu7_87hj9GSC5Ls_z5y1xe_1is6GJpvvJ_pAKSLg</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Gloyn, Anna L.</creator><creator>Reimann, Frank</creator><creator>Girard, Christophe</creator><creator>Edghill, Emma L.</creator><creator>Proks, Peter</creator><creator>Pearson, Ewan R.</creator><creator>Temple, I. Karen</creator><creator>Mackay, Deborah J.G.</creator><creator>Shield, Julian P.H.</creator><creator>Freedenberg, Debra</creator><creator>Noyes, Kathryn</creator><creator>Ellard, Sian</creator><creator>Ashcroft, Frances M.</creator><creator>Gribble, Fiona M.</creator><creator>Hattersley, Andrew T.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20050401</creationdate><title>Relapsing diabetes can result from moderately activating mutations in KCNJ11</title><author>Gloyn, Anna L. ; Reimann, Frank ; Girard, Christophe ; Edghill, Emma L. ; Proks, Peter ; Pearson, Ewan R. ; Temple, I. Karen ; Mackay, Deborah J.G. ; Shield, Julian P.H. ; Freedenberg, Debra ; Noyes, Kathryn ; Ellard, Sian ; Ashcroft, Frances M. ; Gribble, Fiona M. ; Hattersley, Andrew T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-a52e0bf9cb7a039dbaae89a859078b08163d47388097c4b7207c072383abfffe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adenosine Triphosphate - chemistry</topic><topic>Adult</topic><topic>Animals</topic><topic>ATP-Binding Cassette Transporters</topic><topic>Biological and medical sciences</topic><topic>Child, Preschool</topic><topic>Chromosomes, Human, Pair 6</topic><topic>Diabetes Mellitus - genetics</topic><topic>Diabetes. Impaired glucose tolerance</topic><topic>DNA Mutational Analysis</topic><topic>Dose-Response Relationship, Drug</topic><topic>Electrophysiology</topic><topic>Endocrine pancreas. Apud cells (diseases)</topic><topic>Endocrinopathies</topic><topic>Etiopathogenesis. Screening. Investigations. Target tissue resistance</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Heterozygote</topic><topic>Homozygote</topic><topic>Humans</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Inhibitory Concentration 50</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Models, Molecular</topic><topic>Molecular and cellular biology</topic><topic>Mutation</topic><topic>Oocytes - metabolism</topic><topic>Pedigree</topic><topic>Phenotype</topic><topic>Potassium Channels - genetics</topic><topic>Potassium Channels, Inwardly Rectifying - genetics</topic><topic>Rats</topic><topic>Receptors, Drug</topic><topic>Recurrence</topic><topic>Sulfonylurea Receptors</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gloyn, Anna L.</creatorcontrib><creatorcontrib>Reimann, Frank</creatorcontrib><creatorcontrib>Girard, Christophe</creatorcontrib><creatorcontrib>Edghill, Emma L.</creatorcontrib><creatorcontrib>Proks, Peter</creatorcontrib><creatorcontrib>Pearson, Ewan R.</creatorcontrib><creatorcontrib>Temple, I. Karen</creatorcontrib><creatorcontrib>Mackay, Deborah J.G.</creatorcontrib><creatorcontrib>Shield, Julian P.H.</creatorcontrib><creatorcontrib>Freedenberg, Debra</creatorcontrib><creatorcontrib>Noyes, Kathryn</creatorcontrib><creatorcontrib>Ellard, Sian</creatorcontrib><creatorcontrib>Ashcroft, Frances M.</creatorcontrib><creatorcontrib>Gribble, Fiona M.</creatorcontrib><creatorcontrib>Hattersley, Andrew T.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gloyn, Anna L.</au><au>Reimann, Frank</au><au>Girard, Christophe</au><au>Edghill, Emma L.</au><au>Proks, Peter</au><au>Pearson, Ewan R.</au><au>Temple, I. Karen</au><au>Mackay, Deborah J.G.</au><au>Shield, Julian P.H.</au><au>Freedenberg, Debra</au><au>Noyes, Kathryn</au><au>Ellard, Sian</au><au>Ashcroft, Frances M.</au><au>Gribble, Fiona M.</au><au>Hattersley, Andrew T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relapsing diabetes can result from moderately activating mutations in KCNJ11</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum. Mol. Genet</addtitle><date>2005-04-01</date><risdate>2005</risdate><volume>14</volume><issue>7</issue><spage>925</spage><epage>934</epage><pages>925-934</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><coden>HNGEE5</coden><abstract>Neonatal diabetes can either remit and hence be transient or else may be permanent. These two phenotypes were considered to be genetically distinct. Abnormalities of 6q24 are the commonest cause of transient neonatal diabetes (TNDM). Mutations in KCNJ11, which encodes Kir6.2, the pore-forming subunit of the ATP-sensitive potassium channel (KATP), are the commonest cause of permanent neonatal diabetes (PNDM). In addition to diabetes, some KCNJ11 mutations also result in marked developmental delay and epilepsy. These mutations are more severe on functional characterization. We investigated whether mutations in KCNJ11 could also give rise to TNDM. We identified the three novel heterozygous mutations (G53S, G53R, I182V) in three of 11 probands with clinically defined TNDM, who did not have chromosome 6q24 abnormalities. The mutations co-segregated with diabetes within families and were not found in 100 controls. All probands had insulin-treated diabetes diagnosed in the first 4 months and went into remission by 7–14 months. Functional characterization of the TNDM associated mutations was performed by expressing the mutated Kir6.2 with SUR1 in Xenopus laevis oocytes. All three heterozygous mutations resulted in a reduction in the sensitivity to ATP when compared with wild-type (IC50∼30 versus ∼7 µM, P-value for is all &lt;0.01); however, this was less profoundly reduced than with the PNDM associated mutations. In conclusion, mutations in KCNJ11 are the first genetic cause for remitting as well as permanent diabetes. This suggests that a fixed ion channel abnormality can result in a fluctuating glycaemic phenotype. The multiple phenotypes associated with activating KCNJ11 mutations may reflect their severity in vitro.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>15718250</pmid><doi>10.1093/hmg/ddi086</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0964-6906
ispartof Human molecular genetics, 2005-04, Vol.14 (7), p.925-934
issn 0964-6906
1460-2083
language eng
recordid cdi_proquest_miscellaneous_17806596
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adenosine Triphosphate - chemistry
Adult
Animals
ATP-Binding Cassette Transporters
Biological and medical sciences
Child, Preschool
Chromosomes, Human, Pair 6
Diabetes Mellitus - genetics
Diabetes. Impaired glucose tolerance
DNA Mutational Analysis
Dose-Response Relationship, Drug
Electrophysiology
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
Etiopathogenesis. Screening. Investigations. Target tissue resistance
Female
Fundamental and applied biological sciences. Psychology
Genetics of eukaryotes. Biological and molecular evolution
Heterozygote
Homozygote
Humans
Infant
Infant, Newborn
Inhibitory Concentration 50
Male
Medical sciences
Models, Molecular
Molecular and cellular biology
Mutation
Oocytes - metabolism
Pedigree
Phenotype
Potassium Channels - genetics
Potassium Channels, Inwardly Rectifying - genetics
Rats
Receptors, Drug
Recurrence
Sulfonylurea Receptors
Xenopus laevis
title Relapsing diabetes can result from moderately activating mutations in KCNJ11
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A39%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relapsing%20diabetes%20can%20result%20from%20moderately%20activating%20mutations%20in%20KCNJ11&rft.jtitle=Human%20molecular%20genetics&rft.au=Gloyn,%20Anna%20L.&rft.date=2005-04-01&rft.volume=14&rft.issue=7&rft.spage=925&rft.epage=934&rft.pages=925-934&rft.issn=0964-6906&rft.eissn=1460-2083&rft.coden=HNGEE5&rft_id=info:doi/10.1093/hmg/ddi086&rft_dat=%3Cproquest_cross%3E821711191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211302026&rft_id=info:pmid/15718250&rfr_iscdi=true