Heat-activated persulfate oxidation of PFOA, 6:2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation

PFOA (perfluorooctanoic acid) oxidation (0.121–6.04 μM) by heat-activated persulfate was evaluated at 20–60 °C with 4.2–84 mM S2O82− and in the presence of soluble fuel components to assess feasibility for in-situ remediation of groundwater. 6:2 fluorotelomer sulfonic acid/sulfonate (6:2 FTSA) and P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2016-02, Vol.145, p.376-383
Hauptverfasser: Park, Saerom, Lee, Linda S., Medina, Victor F., Zull, Aaron, Waisner, Scott
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 383
container_issue
container_start_page 376
container_title Chemosphere (Oxford)
container_volume 145
creator Park, Saerom
Lee, Linda S.
Medina, Victor F.
Zull, Aaron
Waisner, Scott
description PFOA (perfluorooctanoic acid) oxidation (0.121–6.04 μM) by heat-activated persulfate was evaluated at 20–60 °C with 4.2–84 mM S2O82− and in the presence of soluble fuel components to assess feasibility for in-situ remediation of groundwater. 6:2 fluorotelomer sulfonic acid/sulfonate (6:2 FTSA) and PFOS (perfluorooctanesulfonic acid) persulfate oxidation was also evaluated in a subset of conditions given their co-occurrence at many sites. High performance liquid chromatography electron spray tandem mass spectrometry was used for organic analysis and fluoride was measured using a fluoride-specific electrode. PFOA pseudo-1st order transformation rates (k1,PFOA) increased with increasing temperature (half-lives from 0.1 to 7 d for 60 to 30 °C) sequentially removing CF2 groups (‘unzipping’) to shorter chain perfluoroalkyl carboxylic acids (PFCAs) and F−. At 50 °C, a 5-fold increase in S2O82− led to a 5-fold increase in k1,PFOA after which self-scavenging by sulfate radicals decreased the relative rate of increase with more S2O82−. Benzene, toluene, ethylbenzene and xylene did not affect k1,PFOA even at 40 times higher molar concentrations than PFOA. A modeling approach to explore pathways strongly supported that for 6:2 FTSA, both the ethyl linkage and CF2–CH2 bond of 6:2 FTSA oxidize simultaneously, resulting in a ratio of ∼25/75 PFHpA/PFHxA. The effectiveness of heat-activated S2O82− on PFOA oxidation was reduced in a soil slurry; therefore, repeated persulfate injections are required to efficiently achieve complete oxidation in the field. However, PFOS remained unaltered even at higher activation temperatures, thus limiting the sole use of heat-activated persulfate for perfluoroalkyl substances removal in the field. [Display omitted] •PFOA is oxidized by heat-activated persulfate within 72 h at 50 °C.•PFOA persulfate oxidation follows an unzipping pathway to PFCAs and fluoride.•PFOA transformation rates increases with increasing temperature.•Heat-activated persulfate oxidizes 6:2 FTSA simultaneously to PFHpA and PFHxA.•PFOS is not transformed with heat (85–90 °C)-activated with persulfate (60–84 mM).
doi_str_mv 10.1016/j.chemosphere.2015.11.097
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1780534593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653515304288</els_id><sourcerecordid>1765948059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-fdc53061ba57a00c19133680dd9b7cc681466442d05a5a7805c65db3a0da070a3</originalsourceid><addsrcrecordid>eNqNkcFu1DAURS1ERYfCLyCzY9Gkz0nsxOyqUUuRKhUJWFuO_UI9SuLBdgr9Cz4ZhymI5axsyef4SvcS8pZByYCJi11p7nHycX-PAcsKGC8ZK0G2z8iGda0sWCW752QD0PBC8Jqfkpcx7gCyzOULcloJISvO-Ib8ukGdCm2Se9AJLd1jiMs45Dv1P53VyfmZ-oF-ur67PKfifUWHcfHBJxz9hIGusJ8zfk71bFfsM11mm1-Mn61b9Zghl3Q_Ih18oG4uoksL_RZ8Bn9kNdCAE1r3J-wVORn0GPH103lGvl5ffdneFLd3Hz5uL28Lw0GmYrCG1yBYr3mrAQyTrK5FB9bKvjVGdKwRomkqC1xz3XbAjeC2rzVYDS3o-oy8O_y7D_77gjGpyUWD46hn9EtUbHXqhsv6CDS32mRcHoOCZBXjIqPygJrgYww4qH1wkw6PioFaZ1Y79d_Map1ZMabyzNl98xSz9Lm5f-bfXTOwPQCYK3xwGFQ0DmeTWw5okrLeHRHzG2NBwBk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760912156</pqid></control><display><type>article</type><title>Heat-activated persulfate oxidation of PFOA, 6:2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Park, Saerom ; Lee, Linda S. ; Medina, Victor F. ; Zull, Aaron ; Waisner, Scott</creator><creatorcontrib>Park, Saerom ; Lee, Linda S. ; Medina, Victor F. ; Zull, Aaron ; Waisner, Scott</creatorcontrib><description>PFOA (perfluorooctanoic acid) oxidation (0.121–6.04 μM) by heat-activated persulfate was evaluated at 20–60 °C with 4.2–84 mM S2O82− and in the presence of soluble fuel components to assess feasibility for in-situ remediation of groundwater. 6:2 fluorotelomer sulfonic acid/sulfonate (6:2 FTSA) and PFOS (perfluorooctanesulfonic acid) persulfate oxidation was also evaluated in a subset of conditions given their co-occurrence at many sites. High performance liquid chromatography electron spray tandem mass spectrometry was used for organic analysis and fluoride was measured using a fluoride-specific electrode. PFOA pseudo-1st order transformation rates (k1,PFOA) increased with increasing temperature (half-lives from 0.1 to 7 d for 60 to 30 °C) sequentially removing CF2 groups (‘unzipping’) to shorter chain perfluoroalkyl carboxylic acids (PFCAs) and F−. At 50 °C, a 5-fold increase in S2O82− led to a 5-fold increase in k1,PFOA after which self-scavenging by sulfate radicals decreased the relative rate of increase with more S2O82−. Benzene, toluene, ethylbenzene and xylene did not affect k1,PFOA even at 40 times higher molar concentrations than PFOA. A modeling approach to explore pathways strongly supported that for 6:2 FTSA, both the ethyl linkage and CF2–CH2 bond of 6:2 FTSA oxidize simultaneously, resulting in a ratio of ∼25/75 PFHpA/PFHxA. The effectiveness of heat-activated S2O82− on PFOA oxidation was reduced in a soil slurry; therefore, repeated persulfate injections are required to efficiently achieve complete oxidation in the field. However, PFOS remained unaltered even at higher activation temperatures, thus limiting the sole use of heat-activated persulfate for perfluoroalkyl substances removal in the field. [Display omitted] •PFOA is oxidized by heat-activated persulfate within 72 h at 50 °C.•PFOA persulfate oxidation follows an unzipping pathway to PFCAs and fluoride.•PFOA transformation rates increases with increasing temperature.•Heat-activated persulfate oxidizes 6:2 FTSA simultaneously to PFHpA and PFHxA.•PFOS is not transformed with heat (85–90 °C)-activated with persulfate (60–84 mM).</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2015.11.097</identifier><identifier>PMID: 26692515</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>6:2 FTSA ; Activation ; Caprylates - chemistry ; Carboxylic Acids - chemistry ; Electrodes ; Environmental Restoration and Remediation ; Ethylbenzene ; Fluorocarbons - chemistry ; Groundwater - chemistry ; Half life ; Heat-activated persulfate ; Hot Temperature ; Oxidation ; Perfluoroalkyls ; PFOA ; PFOS ; Sodium Compounds - chemistry ; Sulfates ; Sulfates - chemistry ; Sulfonates ; Sulfonic Acids - chemistry ; Water Pollutants, Chemical - chemistry</subject><ispartof>Chemosphere (Oxford), 2016-02, Vol.145, p.376-383</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-fdc53061ba57a00c19133680dd9b7cc681466442d05a5a7805c65db3a0da070a3</citedby><cites>FETCH-LOGICAL-c509t-fdc53061ba57a00c19133680dd9b7cc681466442d05a5a7805c65db3a0da070a3</cites><orcidid>0000-0003-4360-4712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045653515304288$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26692515$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Saerom</creatorcontrib><creatorcontrib>Lee, Linda S.</creatorcontrib><creatorcontrib>Medina, Victor F.</creatorcontrib><creatorcontrib>Zull, Aaron</creatorcontrib><creatorcontrib>Waisner, Scott</creatorcontrib><title>Heat-activated persulfate oxidation of PFOA, 6:2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>PFOA (perfluorooctanoic acid) oxidation (0.121–6.04 μM) by heat-activated persulfate was evaluated at 20–60 °C with 4.2–84 mM S2O82− and in the presence of soluble fuel components to assess feasibility for in-situ remediation of groundwater. 6:2 fluorotelomer sulfonic acid/sulfonate (6:2 FTSA) and PFOS (perfluorooctanesulfonic acid) persulfate oxidation was also evaluated in a subset of conditions given their co-occurrence at many sites. High performance liquid chromatography electron spray tandem mass spectrometry was used for organic analysis and fluoride was measured using a fluoride-specific electrode. PFOA pseudo-1st order transformation rates (k1,PFOA) increased with increasing temperature (half-lives from 0.1 to 7 d for 60 to 30 °C) sequentially removing CF2 groups (‘unzipping’) to shorter chain perfluoroalkyl carboxylic acids (PFCAs) and F−. At 50 °C, a 5-fold increase in S2O82− led to a 5-fold increase in k1,PFOA after which self-scavenging by sulfate radicals decreased the relative rate of increase with more S2O82−. Benzene, toluene, ethylbenzene and xylene did not affect k1,PFOA even at 40 times higher molar concentrations than PFOA. A modeling approach to explore pathways strongly supported that for 6:2 FTSA, both the ethyl linkage and CF2–CH2 bond of 6:2 FTSA oxidize simultaneously, resulting in a ratio of ∼25/75 PFHpA/PFHxA. The effectiveness of heat-activated S2O82− on PFOA oxidation was reduced in a soil slurry; therefore, repeated persulfate injections are required to efficiently achieve complete oxidation in the field. However, PFOS remained unaltered even at higher activation temperatures, thus limiting the sole use of heat-activated persulfate for perfluoroalkyl substances removal in the field. [Display omitted] •PFOA is oxidized by heat-activated persulfate within 72 h at 50 °C.•PFOA persulfate oxidation follows an unzipping pathway to PFCAs and fluoride.•PFOA transformation rates increases with increasing temperature.•Heat-activated persulfate oxidizes 6:2 FTSA simultaneously to PFHpA and PFHxA.•PFOS is not transformed with heat (85–90 °C)-activated with persulfate (60–84 mM).</description><subject>6:2 FTSA</subject><subject>Activation</subject><subject>Caprylates - chemistry</subject><subject>Carboxylic Acids - chemistry</subject><subject>Electrodes</subject><subject>Environmental Restoration and Remediation</subject><subject>Ethylbenzene</subject><subject>Fluorocarbons - chemistry</subject><subject>Groundwater - chemistry</subject><subject>Half life</subject><subject>Heat-activated persulfate</subject><subject>Hot Temperature</subject><subject>Oxidation</subject><subject>Perfluoroalkyls</subject><subject>PFOA</subject><subject>PFOS</subject><subject>Sodium Compounds - chemistry</subject><subject>Sulfates</subject><subject>Sulfates - chemistry</subject><subject>Sulfonates</subject><subject>Sulfonic Acids - chemistry</subject><subject>Water Pollutants, Chemical - chemistry</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFu1DAURS1ERYfCLyCzY9Gkz0nsxOyqUUuRKhUJWFuO_UI9SuLBdgr9Cz4ZhymI5axsyef4SvcS8pZByYCJi11p7nHycX-PAcsKGC8ZK0G2z8iGda0sWCW752QD0PBC8Jqfkpcx7gCyzOULcloJISvO-Ib8ukGdCm2Se9AJLd1jiMs45Dv1P53VyfmZ-oF-ur67PKfifUWHcfHBJxz9hIGusJ8zfk71bFfsM11mm1-Mn61b9Zghl3Q_Ih18oG4uoksL_RZ8Bn9kNdCAE1r3J-wVORn0GPH103lGvl5ffdneFLd3Hz5uL28Lw0GmYrCG1yBYr3mrAQyTrK5FB9bKvjVGdKwRomkqC1xz3XbAjeC2rzVYDS3o-oy8O_y7D_77gjGpyUWD46hn9EtUbHXqhsv6CDS32mRcHoOCZBXjIqPygJrgYww4qH1wkw6PioFaZ1Y79d_Map1ZMabyzNl98xSz9Lm5f-bfXTOwPQCYK3xwGFQ0DmeTWw5okrLeHRHzG2NBwBk</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Park, Saerom</creator><creator>Lee, Linda S.</creator><creator>Medina, Victor F.</creator><creator>Zull, Aaron</creator><creator>Waisner, Scott</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7TV</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><scope>7SU</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-4360-4712</orcidid></search><sort><creationdate>201602</creationdate><title>Heat-activated persulfate oxidation of PFOA, 6:2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation</title><author>Park, Saerom ; Lee, Linda S. ; Medina, Victor F. ; Zull, Aaron ; Waisner, Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-fdc53061ba57a00c19133680dd9b7cc681466442d05a5a7805c65db3a0da070a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>6:2 FTSA</topic><topic>Activation</topic><topic>Caprylates - chemistry</topic><topic>Carboxylic Acids - chemistry</topic><topic>Electrodes</topic><topic>Environmental Restoration and Remediation</topic><topic>Ethylbenzene</topic><topic>Fluorocarbons - chemistry</topic><topic>Groundwater - chemistry</topic><topic>Half life</topic><topic>Heat-activated persulfate</topic><topic>Hot Temperature</topic><topic>Oxidation</topic><topic>Perfluoroalkyls</topic><topic>PFOA</topic><topic>PFOS</topic><topic>Sodium Compounds - chemistry</topic><topic>Sulfates</topic><topic>Sulfates - chemistry</topic><topic>Sulfonates</topic><topic>Sulfonic Acids - chemistry</topic><topic>Water Pollutants, Chemical - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Saerom</creatorcontrib><creatorcontrib>Lee, Linda S.</creatorcontrib><creatorcontrib>Medina, Victor F.</creatorcontrib><creatorcontrib>Zull, Aaron</creatorcontrib><creatorcontrib>Waisner, Scott</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Saerom</au><au>Lee, Linda S.</au><au>Medina, Victor F.</au><au>Zull, Aaron</au><au>Waisner, Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat-activated persulfate oxidation of PFOA, 6:2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2016-02</date><risdate>2016</risdate><volume>145</volume><spage>376</spage><epage>383</epage><pages>376-383</pages><issn>0045-6535</issn><eissn>1879-1298</eissn><abstract>PFOA (perfluorooctanoic acid) oxidation (0.121–6.04 μM) by heat-activated persulfate was evaluated at 20–60 °C with 4.2–84 mM S2O82− and in the presence of soluble fuel components to assess feasibility for in-situ remediation of groundwater. 6:2 fluorotelomer sulfonic acid/sulfonate (6:2 FTSA) and PFOS (perfluorooctanesulfonic acid) persulfate oxidation was also evaluated in a subset of conditions given their co-occurrence at many sites. High performance liquid chromatography electron spray tandem mass spectrometry was used for organic analysis and fluoride was measured using a fluoride-specific electrode. PFOA pseudo-1st order transformation rates (k1,PFOA) increased with increasing temperature (half-lives from 0.1 to 7 d for 60 to 30 °C) sequentially removing CF2 groups (‘unzipping’) to shorter chain perfluoroalkyl carboxylic acids (PFCAs) and F−. At 50 °C, a 5-fold increase in S2O82− led to a 5-fold increase in k1,PFOA after which self-scavenging by sulfate radicals decreased the relative rate of increase with more S2O82−. Benzene, toluene, ethylbenzene and xylene did not affect k1,PFOA even at 40 times higher molar concentrations than PFOA. A modeling approach to explore pathways strongly supported that for 6:2 FTSA, both the ethyl linkage and CF2–CH2 bond of 6:2 FTSA oxidize simultaneously, resulting in a ratio of ∼25/75 PFHpA/PFHxA. The effectiveness of heat-activated S2O82− on PFOA oxidation was reduced in a soil slurry; therefore, repeated persulfate injections are required to efficiently achieve complete oxidation in the field. However, PFOS remained unaltered even at higher activation temperatures, thus limiting the sole use of heat-activated persulfate for perfluoroalkyl substances removal in the field. [Display omitted] •PFOA is oxidized by heat-activated persulfate within 72 h at 50 °C.•PFOA persulfate oxidation follows an unzipping pathway to PFCAs and fluoride.•PFOA transformation rates increases with increasing temperature.•Heat-activated persulfate oxidizes 6:2 FTSA simultaneously to PFHpA and PFHxA.•PFOS is not transformed with heat (85–90 °C)-activated with persulfate (60–84 mM).</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>26692515</pmid><doi>10.1016/j.chemosphere.2015.11.097</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4360-4712</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-6535
ispartof Chemosphere (Oxford), 2016-02, Vol.145, p.376-383
issn 0045-6535
1879-1298
language eng
recordid cdi_proquest_miscellaneous_1780534593
source MEDLINE; Elsevier ScienceDirect Journals
subjects 6:2 FTSA
Activation
Caprylates - chemistry
Carboxylic Acids - chemistry
Electrodes
Environmental Restoration and Remediation
Ethylbenzene
Fluorocarbons - chemistry
Groundwater - chemistry
Half life
Heat-activated persulfate
Hot Temperature
Oxidation
Perfluoroalkyls
PFOA
PFOS
Sodium Compounds - chemistry
Sulfates
Sulfates - chemistry
Sulfonates
Sulfonic Acids - chemistry
Water Pollutants, Chemical - chemistry
title Heat-activated persulfate oxidation of PFOA, 6:2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T05%3A42%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat-activated%20persulfate%20oxidation%20of%20PFOA,%206:2%20fluorotelomer%20sulfonate,%20and%20PFOS%20under%20conditions%20suitable%20for%20in-situ%20groundwater%20remediation&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Park,%20Saerom&rft.date=2016-02&rft.volume=145&rft.spage=376&rft.epage=383&rft.pages=376-383&rft.issn=0045-6535&rft.eissn=1879-1298&rft_id=info:doi/10.1016/j.chemosphere.2015.11.097&rft_dat=%3Cproquest_cross%3E1765948059%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1760912156&rft_id=info:pmid/26692515&rft_els_id=S0045653515304288&rfr_iscdi=true