A Dynamic Regulatory Model of Phytoplanktonic Acclimation to Light, Nutrients, and Temperature

A new regulatory model can describe acclimation of phytoplankton growth rate (μ), chlorophyll a: carbon ratio and nitrogen : carbon ratio to irradiance, temperature and nutrient availability. The model uses three indices of phytoplankton biomass-phytoplankton carbon (C), phytoplankton nitrogen (N),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Limnology and oceanography 1998-06, Vol.43 (4), p.679-694
Hauptverfasser: Geider, Richard J., MacIntyre, Hugh L., Kana, Todd M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 694
container_issue 4
container_start_page 679
container_title Limnology and oceanography
container_volume 43
creator Geider, Richard J.
MacIntyre, Hugh L.
Kana, Todd M.
description A new regulatory model can describe acclimation of phytoplankton growth rate (μ), chlorophyll a: carbon ratio and nitrogen : carbon ratio to irradiance, temperature and nutrient availability. The model uses three indices of phytoplankton biomass-phytoplankton carbon (C), phytoplankton nitrogen (N), and chlorophyll a (Chl). The model links the light-saturated rate of photosynthesis to N : C, requires that Chl a synthesis be coupled to nitrogen assimilation, and includes several regulatory features. These include feedback inhibition of the nitrogen assimilation rate by increses in the N : C ratio, as well as regulation of Chl a synthesis by the balance betweeen light absorption and photosynthetic carbon fixation. The model treats respiration as the sum of hte maintenance metabolic requirement and the cost of biosynthesis. In addition, the model can account for accumulation and mobilization of energy reserves (i.e. variability of N : C) and photoacclimation (i.e. variability of Chl:N and Chl:C) in response to variations in irradiance and nutrient and availability. The assumptions of the model are shown to be in agreement with experimental observations and the model output compares favorably with data for cultures in balanced and unbalanced growth.
doi_str_mv 10.4319/lo.1998.43.4.0679
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1780517495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2839077</jstor_id><sourcerecordid>2839077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5209-d596ef9600f2587d48b91eac99e04991d5d7245430d0b58efe9f164f5339ef4b3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS1EJZbCB0Di4ANCHJqtHdtJ5sBhVf5K2xahcsXyOuM2xRtvbUco3x6vdgU3evKM9XvPM8-EvOJsKQWHcx-WHKArzVIuWdPCE7LgIKBSCthTsmCslpUo9TPyPKV7xhgopRbk54p-mEezHSz9jreTNznEmV6GHj0Njn67m3PYeTP-ymEszMpaP2xNHsJIc6Dr4fYun9GrKccBx5zOqBl7eoPbHUaTp4gvyIkzPuHL43lKfnz6eHPxpVpff_56sVpXVtUMql5Bgw4axlyturaX3QY4GguATALwXvVtLZUUrGcb1aFDcLyRTgkB6ORGnJJ3B99dDA8Tpqy3Q7Loy-QYpqR52zHFWwmqoG__jzYlGFB1AfkBtDGkFNHpXSy7x1lzpvehax_0PvTSaKn3oRfNm6O5SdZ4F81oh_RXWEtRpmgK9v6A_R48zo_76vXV9f5GCnl85vVBf5_Kf_2z7wSwthV_AKZznUI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16555952</pqid></control><display><type>article</type><title>A Dynamic Regulatory Model of Phytoplanktonic Acclimation to Light, Nutrients, and Temperature</title><source>JSTOR Archive Collection A-Z Listing</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Geider, Richard J. ; MacIntyre, Hugh L. ; Kana, Todd M.</creator><creatorcontrib>Geider, Richard J. ; MacIntyre, Hugh L. ; Kana, Todd M.</creatorcontrib><description>A new regulatory model can describe acclimation of phytoplankton growth rate (μ), chlorophyll a: carbon ratio and nitrogen : carbon ratio to irradiance, temperature and nutrient availability. The model uses three indices of phytoplankton biomass-phytoplankton carbon (C), phytoplankton nitrogen (N), and chlorophyll a (Chl). The model links the light-saturated rate of photosynthesis to N : C, requires that Chl a synthesis be coupled to nitrogen assimilation, and includes several regulatory features. These include feedback inhibition of the nitrogen assimilation rate by increses in the N : C ratio, as well as regulation of Chl a synthesis by the balance betweeen light absorption and photosynthetic carbon fixation. The model treats respiration as the sum of hte maintenance metabolic requirement and the cost of biosynthesis. In addition, the model can account for accumulation and mobilization of energy reserves (i.e. variability of N : C) and photoacclimation (i.e. variability of Chl:N and Chl:C) in response to variations in irradiance and nutrient and availability. The assumptions of the model are shown to be in agreement with experimental observations and the model output compares favorably with data for cultures in balanced and unbalanced growth.</description><identifier>ISSN: 0024-3590</identifier><identifier>EISSN: 1939-5590</identifier><identifier>DOI: 10.4319/lo.1998.43.4.0679</identifier><identifier>CODEN: LIOCAH</identifier><language>eng</language><publisher>Waco, TX: American Society of Limnology and Oceanography</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Biological and medical sciences ; Brackish ; Carbon ; Freshwater ; Fundamental and applied biological sciences. Psychology ; General aspects ; Irradiance ; Marine ; Modeling ; Nitrates ; Nitrogen ; Parametric models ; Photons ; Photosynthesis ; Physiological assimilation ; Phytoplankton ; Synecology</subject><ispartof>Limnology and oceanography, 1998-06, Vol.43 (4), p.679-694</ispartof><rights>Copyright 1998 American Society of Limnology and Oceanography, Inc.</rights><rights>1998, by the Association for the Sciences of Limnology and Oceanography, Inc.</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5209-d596ef9600f2587d48b91eac99e04991d5d7245430d0b58efe9f164f5339ef4b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2839077$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2839077$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,1433,27923,27924,45573,45574,46408,46832,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2435176$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Geider, Richard J.</creatorcontrib><creatorcontrib>MacIntyre, Hugh L.</creatorcontrib><creatorcontrib>Kana, Todd M.</creatorcontrib><title>A Dynamic Regulatory Model of Phytoplanktonic Acclimation to Light, Nutrients, and Temperature</title><title>Limnology and oceanography</title><description>A new regulatory model can describe acclimation of phytoplankton growth rate (μ), chlorophyll a: carbon ratio and nitrogen : carbon ratio to irradiance, temperature and nutrient availability. The model uses three indices of phytoplankton biomass-phytoplankton carbon (C), phytoplankton nitrogen (N), and chlorophyll a (Chl). The model links the light-saturated rate of photosynthesis to N : C, requires that Chl a synthesis be coupled to nitrogen assimilation, and includes several regulatory features. These include feedback inhibition of the nitrogen assimilation rate by increses in the N : C ratio, as well as regulation of Chl a synthesis by the balance betweeen light absorption and photosynthetic carbon fixation. The model treats respiration as the sum of hte maintenance metabolic requirement and the cost of biosynthesis. In addition, the model can account for accumulation and mobilization of energy reserves (i.e. variability of N : C) and photoacclimation (i.e. variability of Chl:N and Chl:C) in response to variations in irradiance and nutrient and availability. The assumptions of the model are shown to be in agreement with experimental observations and the model output compares favorably with data for cultures in balanced and unbalanced growth.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>Brackish</subject><subject>Carbon</subject><subject>Freshwater</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Irradiance</subject><subject>Marine</subject><subject>Modeling</subject><subject>Nitrates</subject><subject>Nitrogen</subject><subject>Parametric models</subject><subject>Photons</subject><subject>Photosynthesis</subject><subject>Physiological assimilation</subject><subject>Phytoplankton</subject><subject>Synecology</subject><issn>0024-3590</issn><issn>1939-5590</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAQxS1EJZbCB0Di4ANCHJqtHdtJ5sBhVf5K2xahcsXyOuM2xRtvbUco3x6vdgU3evKM9XvPM8-EvOJsKQWHcx-WHKArzVIuWdPCE7LgIKBSCthTsmCslpUo9TPyPKV7xhgopRbk54p-mEezHSz9jreTNznEmV6GHj0Njn67m3PYeTP-ymEszMpaP2xNHsJIc6Dr4fYun9GrKccBx5zOqBl7eoPbHUaTp4gvyIkzPuHL43lKfnz6eHPxpVpff_56sVpXVtUMql5Bgw4axlyturaX3QY4GguATALwXvVtLZUUrGcb1aFDcLyRTgkB6ORGnJJ3B99dDA8Tpqy3Q7Loy-QYpqR52zHFWwmqoG__jzYlGFB1AfkBtDGkFNHpXSy7x1lzpvehax_0PvTSaKn3oRfNm6O5SdZ4F81oh_RXWEtRpmgK9v6A_R48zo_76vXV9f5GCnl85vVBf5_Kf_2z7wSwthV_AKZznUI</recordid><startdate>199806</startdate><enddate>199806</enddate><creator>Geider, Richard J.</creator><creator>MacIntyre, Hugh L.</creator><creator>Kana, Todd M.</creator><general>American Society of Limnology and Oceanography</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TN</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>7QH</scope><scope>7UA</scope></search><sort><creationdate>199806</creationdate><title>A Dynamic Regulatory Model of Phytoplanktonic Acclimation to Light, Nutrients, and Temperature</title><author>Geider, Richard J. ; MacIntyre, Hugh L. ; Kana, Todd M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5209-d596ef9600f2587d48b91eac99e04991d5d7245430d0b58efe9f164f5339ef4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>Brackish</topic><topic>Carbon</topic><topic>Freshwater</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Irradiance</topic><topic>Marine</topic><topic>Modeling</topic><topic>Nitrates</topic><topic>Nitrogen</topic><topic>Parametric models</topic><topic>Photons</topic><topic>Photosynthesis</topic><topic>Physiological assimilation</topic><topic>Phytoplankton</topic><topic>Synecology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geider, Richard J.</creatorcontrib><creatorcontrib>MacIntyre, Hugh L.</creatorcontrib><creatorcontrib>Kana, Todd M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><jtitle>Limnology and oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geider, Richard J.</au><au>MacIntyre, Hugh L.</au><au>Kana, Todd M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Dynamic Regulatory Model of Phytoplanktonic Acclimation to Light, Nutrients, and Temperature</atitle><jtitle>Limnology and oceanography</jtitle><date>1998-06</date><risdate>1998</risdate><volume>43</volume><issue>4</issue><spage>679</spage><epage>694</epage><pages>679-694</pages><issn>0024-3590</issn><eissn>1939-5590</eissn><coden>LIOCAH</coden><abstract>A new regulatory model can describe acclimation of phytoplankton growth rate (μ), chlorophyll a: carbon ratio and nitrogen : carbon ratio to irradiance, temperature and nutrient availability. The model uses three indices of phytoplankton biomass-phytoplankton carbon (C), phytoplankton nitrogen (N), and chlorophyll a (Chl). The model links the light-saturated rate of photosynthesis to N : C, requires that Chl a synthesis be coupled to nitrogen assimilation, and includes several regulatory features. These include feedback inhibition of the nitrogen assimilation rate by increses in the N : C ratio, as well as regulation of Chl a synthesis by the balance betweeen light absorption and photosynthetic carbon fixation. The model treats respiration as the sum of hte maintenance metabolic requirement and the cost of biosynthesis. In addition, the model can account for accumulation and mobilization of energy reserves (i.e. variability of N : C) and photoacclimation (i.e. variability of Chl:N and Chl:C) in response to variations in irradiance and nutrient and availability. The assumptions of the model are shown to be in agreement with experimental observations and the model output compares favorably with data for cultures in balanced and unbalanced growth.</abstract><cop>Waco, TX</cop><pub>American Society of Limnology and Oceanography</pub><doi>10.4319/lo.1998.43.4.0679</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3590
ispartof Limnology and oceanography, 1998-06, Vol.43 (4), p.679-694
issn 0024-3590
1939-5590
language eng
recordid cdi_proquest_miscellaneous_1780517495
source JSTOR Archive Collection A-Z Listing; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; Alma/SFX Local Collection
subjects Animal and plant ecology
Animal, plant and microbial ecology
Biological and medical sciences
Brackish
Carbon
Freshwater
Fundamental and applied biological sciences. Psychology
General aspects
Irradiance
Marine
Modeling
Nitrates
Nitrogen
Parametric models
Photons
Photosynthesis
Physiological assimilation
Phytoplankton
Synecology
title A Dynamic Regulatory Model of Phytoplanktonic Acclimation to Light, Nutrients, and Temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A52%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Dynamic%20Regulatory%20Model%20of%20Phytoplanktonic%20Acclimation%20to%20Light,%20Nutrients,%20and%20Temperature&rft.jtitle=Limnology%20and%20oceanography&rft.au=Geider,%20Richard%20J.&rft.date=1998-06&rft.volume=43&rft.issue=4&rft.spage=679&rft.epage=694&rft.pages=679-694&rft.issn=0024-3590&rft.eissn=1939-5590&rft.coden=LIOCAH&rft_id=info:doi/10.4319/lo.1998.43.4.0679&rft_dat=%3Cjstor_proqu%3E2839077%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16555952&rft_id=info:pmid/&rft_jstor_id=2839077&rfr_iscdi=true