Using geocoded survey data to improve the accuracy of multilevel small area synthetic estimates

This paper examines the secondary data requirements for multilevel small area synthetic estimation (ML-SASE). This research method uses secondary survey data sets as source data for statistical models. The parameters of these models are used to generate data for small areas. The paper assesses the i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Social science research 2016-03, Vol.56, p.108-116
Hauptverfasser: Taylor, Joanna, Moon, Graham, Twigg, Liz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 116
container_issue
container_start_page 108
container_title Social science research
container_volume 56
creator Taylor, Joanna
Moon, Graham
Twigg, Liz
description This paper examines the secondary data requirements for multilevel small area synthetic estimation (ML-SASE). This research method uses secondary survey data sets as source data for statistical models. The parameters of these models are used to generate data for small areas. The paper assesses the impact of knowing the geographical location of survey respondents on the accuracy of estimates, moving beyond debating the generic merits of geocoded social survey datasets to examine quantitatively the hypothesis that knowing the approximate location of respondents can improve the accuracy of the resultant estimates. Four sets of synthetic estimates are generated to predict expected levels of limiting long term illnesses using different levels of knowledge about respondent location. The estimates were compared to comprehensive census data on limiting long term illness (LLTI). Estimates based on fully geocoded data were more accurate than estimates based on data that did not include geocodes. •The data requirements for multilevel synthetic estimation are manifold and restrictive.•Having greater choice of area level covariates can improve the accuracy of synthetic estimates.•Attaching area data from an external source rather than aggregating survey responses can improve small area estimates.•Geocoded surveys are preferable when selecting a dataset to generate small area synthetic estimates.
doi_str_mv 10.1016/j.ssresearch.2015.12.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1780144094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0049089X16000053</els_id><sourcerecordid>3972644781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-967cd10f7b14a320775758f4f446c57447667a591507fbb3c2e31fafdd2bb6913</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EokvhLyBLXLgkzMRfyRGq8iFV4kIlbpbjTFqvkrjYyUr77_FqC0hc4DSXZ-admYcxjlAjoH63r3NOlMklf183gKrGpgbQT9gOodMVCDRP2Q5AdhW03fcL9iLnPQCihvY5u2h0qwwatWP2Nofljt9R9HGggectHejIB7c6vkYe5ocUD8TXe-LO-y05f-Rx5PM2rWGiA008z26auEvkeD4uBVyD55TXMLuV8kv2bHRTpleP9ZLdfrz-dvW5uvn66cvV-5vKK6XWqtPGDwij6VE60YAxyqh2lKOU2isjpdHaONWhAjP2vfANCRzdOAxN3-sOxSV7e55b9v2xlXg7h-xpmtxCccsWTQsoJXTyP1AthWiFaAr65i90H7e0lEMKZaBrWgWn7PZM-RRPXkb7kMr16WgR7MmX3ds_vuzJl8XGFl-l9fVjwNbPNPxu_CWoAB_OAJXnHQIlm32gxdMQEvnVDjH8O-Un7nyrhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770928501</pqid></control><display><type>article</type><title>Using geocoded survey data to improve the accuracy of multilevel small area synthetic estimates</title><source>MEDLINE</source><source>Sociological Abstracts</source><source>Access via ScienceDirect (Elsevier)</source><creator>Taylor, Joanna ; Moon, Graham ; Twigg, Liz</creator><creatorcontrib>Taylor, Joanna ; Moon, Graham ; Twigg, Liz</creatorcontrib><description>This paper examines the secondary data requirements for multilevel small area synthetic estimation (ML-SASE). This research method uses secondary survey data sets as source data for statistical models. The parameters of these models are used to generate data for small areas. The paper assesses the impact of knowing the geographical location of survey respondents on the accuracy of estimates, moving beyond debating the generic merits of geocoded social survey datasets to examine quantitatively the hypothesis that knowing the approximate location of respondents can improve the accuracy of the resultant estimates. Four sets of synthetic estimates are generated to predict expected levels of limiting long term illnesses using different levels of knowledge about respondent location. The estimates were compared to comprehensive census data on limiting long term illness (LLTI). Estimates based on fully geocoded data were more accurate than estimates based on data that did not include geocodes. •The data requirements for multilevel synthetic estimation are manifold and restrictive.•Having greater choice of area level covariates can improve the accuracy of synthetic estimates.•Attaching area data from an external source rather than aggregating survey responses can improve small area estimates.•Geocoded surveys are preferable when selecting a dataset to generate small area synthetic estimates.</description><identifier>ISSN: 0049-089X</identifier><identifier>EISSN: 1096-0317</identifier><identifier>DOI: 10.1016/j.ssresearch.2015.12.006</identifier><identifier>PMID: 26857175</identifier><identifier>CODEN: SSREBG</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Accuracy ; Adult ; Censuses ; Chronic Disease - epidemiology ; Comparative analysis ; Data ; Epidemiologic Methods ; Epidemiology ; Estimating techniques ; Female ; Geocodes ; History of medicine and histology ; Humans ; Illness ; Knowledge ; Limiting long term illness ; Male ; Methodology (Data analysis) ; Middle Aged ; Models, Statistical ; Multilevel ; Prevalence ; Residence Characteristics ; Respondents ; Social Class ; Social sciences ; spatial identifiers ; Surveys and Questionnaires ; Synthetic estimation ; UK census</subject><ispartof>Social science research, 2016-03, Vol.56, p.108-116</ispartof><rights>2016 The Authors</rights><rights>Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Academic Press Mar 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-967cd10f7b14a320775758f4f446c57447667a591507fbb3c2e31fafdd2bb6913</citedby><cites>FETCH-LOGICAL-c555t-967cd10f7b14a320775758f4f446c57447667a591507fbb3c2e31fafdd2bb6913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ssresearch.2015.12.006$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,33774,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26857175$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taylor, Joanna</creatorcontrib><creatorcontrib>Moon, Graham</creatorcontrib><creatorcontrib>Twigg, Liz</creatorcontrib><title>Using geocoded survey data to improve the accuracy of multilevel small area synthetic estimates</title><title>Social science research</title><addtitle>Soc Sci Res</addtitle><description>This paper examines the secondary data requirements for multilevel small area synthetic estimation (ML-SASE). This research method uses secondary survey data sets as source data for statistical models. The parameters of these models are used to generate data for small areas. The paper assesses the impact of knowing the geographical location of survey respondents on the accuracy of estimates, moving beyond debating the generic merits of geocoded social survey datasets to examine quantitatively the hypothesis that knowing the approximate location of respondents can improve the accuracy of the resultant estimates. Four sets of synthetic estimates are generated to predict expected levels of limiting long term illnesses using different levels of knowledge about respondent location. The estimates were compared to comprehensive census data on limiting long term illness (LLTI). Estimates based on fully geocoded data were more accurate than estimates based on data that did not include geocodes. •The data requirements for multilevel synthetic estimation are manifold and restrictive.•Having greater choice of area level covariates can improve the accuracy of synthetic estimates.•Attaching area data from an external source rather than aggregating survey responses can improve small area estimates.•Geocoded surveys are preferable when selecting a dataset to generate small area synthetic estimates.</description><subject>Accuracy</subject><subject>Adult</subject><subject>Censuses</subject><subject>Chronic Disease - epidemiology</subject><subject>Comparative analysis</subject><subject>Data</subject><subject>Epidemiologic Methods</subject><subject>Epidemiology</subject><subject>Estimating techniques</subject><subject>Female</subject><subject>Geocodes</subject><subject>History of medicine and histology</subject><subject>Humans</subject><subject>Illness</subject><subject>Knowledge</subject><subject>Limiting long term illness</subject><subject>Male</subject><subject>Methodology (Data analysis)</subject><subject>Middle Aged</subject><subject>Models, Statistical</subject><subject>Multilevel</subject><subject>Prevalence</subject><subject>Residence Characteristics</subject><subject>Respondents</subject><subject>Social Class</subject><subject>Social sciences</subject><subject>spatial identifiers</subject><subject>Surveys and Questionnaires</subject><subject>Synthetic estimation</subject><subject>UK census</subject><issn>0049-089X</issn><issn>1096-0317</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BHHNA</sourceid><recordid>eNqNkU1v1DAQhi0EokvhLyBLXLgkzMRfyRGq8iFV4kIlbpbjTFqvkrjYyUr77_FqC0hc4DSXZ-admYcxjlAjoH63r3NOlMklf183gKrGpgbQT9gOodMVCDRP2Q5AdhW03fcL9iLnPQCihvY5u2h0qwwatWP2Nofljt9R9HGggectHejIB7c6vkYe5ocUD8TXe-LO-y05f-Rx5PM2rWGiA008z26auEvkeD4uBVyD55TXMLuV8kv2bHRTpleP9ZLdfrz-dvW5uvn66cvV-5vKK6XWqtPGDwij6VE60YAxyqh2lKOU2isjpdHaONWhAjP2vfANCRzdOAxN3-sOxSV7e55b9v2xlXg7h-xpmtxCccsWTQsoJXTyP1AthWiFaAr65i90H7e0lEMKZaBrWgWn7PZM-RRPXkb7kMr16WgR7MmX3ds_vuzJl8XGFl-l9fVjwNbPNPxu_CWoAB_OAJXnHQIlm32gxdMQEvnVDjH8O-Un7nyrhQ</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Taylor, Joanna</creator><creator>Moon, Graham</creator><creator>Twigg, Liz</creator><general>Elsevier Inc</general><general>Academic Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U4</scope><scope>8BJ</scope><scope>BHHNA</scope><scope>DWI</scope><scope>FQK</scope><scope>JBE</scope><scope>WZK</scope><scope>7X8</scope></search><sort><creationdate>20160301</creationdate><title>Using geocoded survey data to improve the accuracy of multilevel small area synthetic estimates</title><author>Taylor, Joanna ; Moon, Graham ; Twigg, Liz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-967cd10f7b14a320775758f4f446c57447667a591507fbb3c2e31fafdd2bb6913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Adult</topic><topic>Censuses</topic><topic>Chronic Disease - epidemiology</topic><topic>Comparative analysis</topic><topic>Data</topic><topic>Epidemiologic Methods</topic><topic>Epidemiology</topic><topic>Estimating techniques</topic><topic>Female</topic><topic>Geocodes</topic><topic>History of medicine and histology</topic><topic>Humans</topic><topic>Illness</topic><topic>Knowledge</topic><topic>Limiting long term illness</topic><topic>Male</topic><topic>Methodology (Data analysis)</topic><topic>Middle Aged</topic><topic>Models, Statistical</topic><topic>Multilevel</topic><topic>Prevalence</topic><topic>Residence Characteristics</topic><topic>Respondents</topic><topic>Social Class</topic><topic>Social sciences</topic><topic>spatial identifiers</topic><topic>Surveys and Questionnaires</topic><topic>Synthetic estimation</topic><topic>UK census</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taylor, Joanna</creatorcontrib><creatorcontrib>Moon, Graham</creatorcontrib><creatorcontrib>Twigg, Liz</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Sociological Abstracts (Ovid)</collection><collection>MEDLINE - Academic</collection><jtitle>Social science research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylor, Joanna</au><au>Moon, Graham</au><au>Twigg, Liz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using geocoded survey data to improve the accuracy of multilevel small area synthetic estimates</atitle><jtitle>Social science research</jtitle><addtitle>Soc Sci Res</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>56</volume><spage>108</spage><epage>116</epage><pages>108-116</pages><issn>0049-089X</issn><eissn>1096-0317</eissn><coden>SSREBG</coden><abstract>This paper examines the secondary data requirements for multilevel small area synthetic estimation (ML-SASE). This research method uses secondary survey data sets as source data for statistical models. The parameters of these models are used to generate data for small areas. The paper assesses the impact of knowing the geographical location of survey respondents on the accuracy of estimates, moving beyond debating the generic merits of geocoded social survey datasets to examine quantitatively the hypothesis that knowing the approximate location of respondents can improve the accuracy of the resultant estimates. Four sets of synthetic estimates are generated to predict expected levels of limiting long term illnesses using different levels of knowledge about respondent location. The estimates were compared to comprehensive census data on limiting long term illness (LLTI). Estimates based on fully geocoded data were more accurate than estimates based on data that did not include geocodes. •The data requirements for multilevel synthetic estimation are manifold and restrictive.•Having greater choice of area level covariates can improve the accuracy of synthetic estimates.•Attaching area data from an external source rather than aggregating survey responses can improve small area estimates.•Geocoded surveys are preferable when selecting a dataset to generate small area synthetic estimates.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26857175</pmid><doi>10.1016/j.ssresearch.2015.12.006</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0049-089X
ispartof Social science research, 2016-03, Vol.56, p.108-116
issn 0049-089X
1096-0317
language eng
recordid cdi_proquest_miscellaneous_1780144094
source MEDLINE; Sociological Abstracts; Access via ScienceDirect (Elsevier)
subjects Accuracy
Adult
Censuses
Chronic Disease - epidemiology
Comparative analysis
Data
Epidemiologic Methods
Epidemiology
Estimating techniques
Female
Geocodes
History of medicine and histology
Humans
Illness
Knowledge
Limiting long term illness
Male
Methodology (Data analysis)
Middle Aged
Models, Statistical
Multilevel
Prevalence
Residence Characteristics
Respondents
Social Class
Social sciences
spatial identifiers
Surveys and Questionnaires
Synthetic estimation
UK census
title Using geocoded survey data to improve the accuracy of multilevel small area synthetic estimates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20geocoded%20survey%20data%20to%20improve%20the%20accuracy%20of%20multilevel%20small%20area%20synthetic%20estimates&rft.jtitle=Social%20science%20research&rft.au=Taylor,%20Joanna&rft.date=2016-03-01&rft.volume=56&rft.spage=108&rft.epage=116&rft.pages=108-116&rft.issn=0049-089X&rft.eissn=1096-0317&rft.coden=SSREBG&rft_id=info:doi/10.1016/j.ssresearch.2015.12.006&rft_dat=%3Cproquest_cross%3E3972644781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770928501&rft_id=info:pmid/26857175&rft_els_id=S0049089X16000053&rfr_iscdi=true