The Hele-Shaw flow and moduli of holomorphic discs

We present a new connection between the Hele-Shaw flow, also known as two-dimensional Laplacian growth, and the theory of holomorphic discs with boundary contained in a totally real submanifold. Using this, we prove short-time existence and uniqueness of the Hele-Shaw flow with varying permeability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2015-12, Vol.151 (12), p.2301-2328
Hauptverfasser: Ross, Julius, Nyström, David Witt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2328
container_issue 12
container_start_page 2301
container_title Compositio mathematica
container_volume 151
creator Ross, Julius
Nyström, David Witt
description We present a new connection between the Hele-Shaw flow, also known as two-dimensional Laplacian growth, and the theory of holomorphic discs with boundary contained in a totally real submanifold. Using this, we prove short-time existence and uniqueness of the Hele-Shaw flow with varying permeability both when starting from a single point and also when starting from a smooth Jordan domain. Applying the same ideas, we prove that the moduli space of smooth quadrature domains is a smooth manifold whose dimension we also calculate, and we give a local existence theorem for the inverse potential problem in the plane.
doi_str_mv 10.1112/S0010437X15007526
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778068198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0010437X15007526</cupid><sourcerecordid>1778068198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-b30a137be03569fb948dd400d56f76e0e727efc4246778451a484bc82462b4e03</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLeAFy_Rmf3Ibo5S1AoFD63gLWyyG5OSdOtuQ_Hfu6E9iOJpGOZ53hmGkGuEO0Sk90sABM7kOwoAKWh2QiYoJKRC8eyUTMZxOs7PyUUIawCgiqoJoavGJnPb2XTZ6H1Sd26f6I1JemeGrk1cnTSuc73z26atEtOGKlySs1p3wV4d65S8PT2uZvN08fr8MntYpBXL2S4tGWhksrTARJbXZc6VMRzAiKyWmQUrqbR1xSnPpFRcoOaKl5WKPS15tKbk9pC79e5zsGFX9HG97Tq9sW4IBUYNMoW5iujNL3TtBr-J10WKK4VUoYgUHqjKuxC8rYutb3vtvwqEYvxi8eeL0WFHR_elb82H_RH9r_UNlAhw1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1748812815</pqid></control><display><type>article</type><title>The Hele-Shaw flow and moduli of holomorphic discs</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Cambridge University Press Journals Complete</source><creator>Ross, Julius ; Nyström, David Witt</creator><creatorcontrib>Ross, Julius ; Nyström, David Witt</creatorcontrib><description>We present a new connection between the Hele-Shaw flow, also known as two-dimensional Laplacian growth, and the theory of holomorphic discs with boundary contained in a totally real submanifold. Using this, we prove short-time existence and uniqueness of the Hele-Shaw flow with varying permeability both when starting from a single point and also when starting from a smooth Jordan domain. Applying the same ideas, we prove that the moduli space of smooth quadrature domains is a smooth manifold whose dimension we also calculate, and we give a local existence theorem for the inverse potential problem in the plane.</description><identifier>ISSN: 0010-437X</identifier><identifier>EISSN: 1570-5846</identifier><identifier>DOI: 10.1112/S0010437X15007526</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><subject>Boundaries ; Discs ; Inverse ; Manifolds (mathematics) ; Mathematical analysis ; Mathematics ; Quadratures ; Theoretical mathematics ; Uniqueness</subject><ispartof>Compositio mathematica, 2015-12, Vol.151 (12), p.2301-2328</ispartof><rights>The Authors 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-b30a137be03569fb948dd400d56f76e0e727efc4246778451a484bc82462b4e03</citedby><cites>FETCH-LOGICAL-c393t-b30a137be03569fb948dd400d56f76e0e727efc4246778451a484bc82462b4e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0010437X15007526/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Ross, Julius</creatorcontrib><creatorcontrib>Nyström, David Witt</creatorcontrib><title>The Hele-Shaw flow and moduli of holomorphic discs</title><title>Compositio mathematica</title><addtitle>Compositio Math</addtitle><description>We present a new connection between the Hele-Shaw flow, also known as two-dimensional Laplacian growth, and the theory of holomorphic discs with boundary contained in a totally real submanifold. Using this, we prove short-time existence and uniqueness of the Hele-Shaw flow with varying permeability both when starting from a single point and also when starting from a smooth Jordan domain. Applying the same ideas, we prove that the moduli space of smooth quadrature domains is a smooth manifold whose dimension we also calculate, and we give a local existence theorem for the inverse potential problem in the plane.</description><subject>Boundaries</subject><subject>Discs</subject><subject>Inverse</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Quadratures</subject><subject>Theoretical mathematics</subject><subject>Uniqueness</subject><issn>0010-437X</issn><issn>1570-5846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1Lw0AQhhdRsFZ_gLeAFy_Rmf3Ibo5S1AoFD63gLWyyG5OSdOtuQ_Hfu6E9iOJpGOZ53hmGkGuEO0Sk90sABM7kOwoAKWh2QiYoJKRC8eyUTMZxOs7PyUUIawCgiqoJoavGJnPb2XTZ6H1Sd26f6I1JemeGrk1cnTSuc73z26atEtOGKlySs1p3wV4d65S8PT2uZvN08fr8MntYpBXL2S4tGWhksrTARJbXZc6VMRzAiKyWmQUrqbR1xSnPpFRcoOaKl5WKPS15tKbk9pC79e5zsGFX9HG97Tq9sW4IBUYNMoW5iujNL3TtBr-J10WKK4VUoYgUHqjKuxC8rYutb3vtvwqEYvxi8eeL0WFHR_elb82H_RH9r_UNlAhw1w</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Ross, Julius</creator><creator>Nyström, David Witt</creator><general>London Mathematical Society</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20151201</creationdate><title>The Hele-Shaw flow and moduli of holomorphic discs</title><author>Ross, Julius ; Nyström, David Witt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-b30a137be03569fb948dd400d56f76e0e727efc4246778451a484bc82462b4e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boundaries</topic><topic>Discs</topic><topic>Inverse</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Quadratures</topic><topic>Theoretical mathematics</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ross, Julius</creatorcontrib><creatorcontrib>Nyström, David Witt</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Compositio mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ross, Julius</au><au>Nyström, David Witt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Hele-Shaw flow and moduli of holomorphic discs</atitle><jtitle>Compositio mathematica</jtitle><addtitle>Compositio Math</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>151</volume><issue>12</issue><spage>2301</spage><epage>2328</epage><pages>2301-2328</pages><issn>0010-437X</issn><eissn>1570-5846</eissn><abstract>We present a new connection between the Hele-Shaw flow, also known as two-dimensional Laplacian growth, and the theory of holomorphic discs with boundary contained in a totally real submanifold. Using this, we prove short-time existence and uniqueness of the Hele-Shaw flow with varying permeability both when starting from a single point and also when starting from a smooth Jordan domain. Applying the same ideas, we prove that the moduli space of smooth quadrature domains is a smooth manifold whose dimension we also calculate, and we give a local existence theorem for the inverse potential problem in the plane.</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1112/S0010437X15007526</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-437X
ispartof Compositio mathematica, 2015-12, Vol.151 (12), p.2301-2328
issn 0010-437X
1570-5846
language eng
recordid cdi_proquest_miscellaneous_1778068198
source EZB-FREE-00999 freely available EZB journals; Cambridge University Press Journals Complete
subjects Boundaries
Discs
Inverse
Manifolds (mathematics)
Mathematical analysis
Mathematics
Quadratures
Theoretical mathematics
Uniqueness
title The Hele-Shaw flow and moduli of holomorphic discs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A23%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Hele-Shaw%20flow%20and%20moduli%20of%20holomorphic%20discs&rft.jtitle=Compositio%20mathematica&rft.au=Ross,%20Julius&rft.date=2015-12-01&rft.volume=151&rft.issue=12&rft.spage=2301&rft.epage=2328&rft.pages=2301-2328&rft.issn=0010-437X&rft.eissn=1570-5846&rft_id=info:doi/10.1112/S0010437X15007526&rft_dat=%3Cproquest_cross%3E1778068198%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1748812815&rft_id=info:pmid/&rft_cupid=10_1112_S0010437X15007526&rfr_iscdi=true