A finite volume method for a two-phase multicomponent polymer flooding
Multicomponent polymer flooding used in enhanced oil recovery is governed by a system of coupled non-strictly hyperbolic conservation laws. In the presence of gravity, the flux functions need not be monotone and hence designing Godunov type upwind schemes is difficult and computationally expensive....
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2014-10, Vol.275, p.667-695 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 695 |
---|---|
container_issue | |
container_start_page | 667 |
container_title | Journal of computational physics |
container_volume | 275 |
creator | K, Sudarshan Kumar C, Praveen D Veerappa Gowda, G. |
description | Multicomponent polymer flooding used in enhanced oil recovery is governed by a system of coupled non-strictly hyperbolic conservation laws. In the presence of gravity, the flux functions need not be monotone and hence designing Godunov type upwind schemes is difficult and computationally expensive. To overcome this difficulty, we use the basic idea of discontinuous flux to reduce the coupled system into an uncoupled system of scalar conservation laws with discontinuous coefficients. For these scalar equations we use the DFLU flux developed in [5] to construct a second order scheme. The scheme is shown to satisfy a maximum principle and the performance of the scheme is shown on both one and two dimensional test problems. |
doi_str_mv | 10.1016/j.jcp.2014.07.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778064253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999114004951</els_id><sourcerecordid>1778064253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-d3017a1a8face4033c2be120a29fe4c16c02333262c70ea952b7fd9cd4e64e3c3</originalsourceid><addsrcrecordid>eNqNkM9LwzAYhoMoOH_8Ad569NL6JemaFk9jOBUGXvQcsvSLS2mbmmST_fdmzLN4euHjeV74XkLuKBQUaPXQFZ2eCga0LEAUKc7IjEIDORO0OiczAEbzpmnoJbkKoQOAel7WM7JaZMaONmK2d_1uwGzAuHVtZpzPVBa_XT5tVUjnXR-tdsPkRhxjNrn-MKDPTO9ca8fPG3JhVB_w9jevycfq6X35kq_fnl-Xi3WuecVj3nKgQlFVG6WxBM412yBloFhjsNS00sA456xiWgCqZs42wrSNbkusSuSaX5P7U-_k3dcOQ5SDDRr7Xo3odkFSIWqoSjbn_0ArxhNKIaH0hGrvQvBo5OTtoPxBUpDHeWUn07zyOK8EIVMk5_HkYHp3b9HLoC2OGlvrUUfZOvuH_QOPeoJY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762364210</pqid></control><display><type>article</type><title>A finite volume method for a two-phase multicomponent polymer flooding</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>K, Sudarshan Kumar ; C, Praveen ; D Veerappa Gowda, G.</creator><creatorcontrib>K, Sudarshan Kumar ; C, Praveen ; D Veerappa Gowda, G.</creatorcontrib><description>Multicomponent polymer flooding used in enhanced oil recovery is governed by a system of coupled non-strictly hyperbolic conservation laws. In the presence of gravity, the flux functions need not be monotone and hence designing Godunov type upwind schemes is difficult and computationally expensive. To overcome this difficulty, we use the basic idea of discontinuous flux to reduce the coupled system into an uncoupled system of scalar conservation laws with discontinuous coefficients. For these scalar equations we use the DFLU flux developed in [5] to construct a second order scheme. The scheme is shown to satisfy a maximum principle and the performance of the scheme is shown on both one and two dimensional test problems.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2014.07.014</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Computation ; Conservation laws ; Discontinuous flux ; Finite volume ; Flux ; Joining ; Mathematical analysis ; Maximum principle ; Multicomponent ; Polymer flooding ; Riemann problems ; Scalars</subject><ispartof>Journal of computational physics, 2014-10, Vol.275, p.667-695</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-d3017a1a8face4033c2be120a29fe4c16c02333262c70ea952b7fd9cd4e64e3c3</citedby><cites>FETCH-LOGICAL-c363t-d3017a1a8face4033c2be120a29fe4c16c02333262c70ea952b7fd9cd4e64e3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2014.07.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>K, Sudarshan Kumar</creatorcontrib><creatorcontrib>C, Praveen</creatorcontrib><creatorcontrib>D Veerappa Gowda, G.</creatorcontrib><title>A finite volume method for a two-phase multicomponent polymer flooding</title><title>Journal of computational physics</title><description>Multicomponent polymer flooding used in enhanced oil recovery is governed by a system of coupled non-strictly hyperbolic conservation laws. In the presence of gravity, the flux functions need not be monotone and hence designing Godunov type upwind schemes is difficult and computationally expensive. To overcome this difficulty, we use the basic idea of discontinuous flux to reduce the coupled system into an uncoupled system of scalar conservation laws with discontinuous coefficients. For these scalar equations we use the DFLU flux developed in [5] to construct a second order scheme. The scheme is shown to satisfy a maximum principle and the performance of the scheme is shown on both one and two dimensional test problems.</description><subject>Computation</subject><subject>Conservation laws</subject><subject>Discontinuous flux</subject><subject>Finite volume</subject><subject>Flux</subject><subject>Joining</subject><subject>Mathematical analysis</subject><subject>Maximum principle</subject><subject>Multicomponent</subject><subject>Polymer flooding</subject><subject>Riemann problems</subject><subject>Scalars</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkM9LwzAYhoMoOH_8Ad569NL6JemaFk9jOBUGXvQcsvSLS2mbmmST_fdmzLN4euHjeV74XkLuKBQUaPXQFZ2eCga0LEAUKc7IjEIDORO0OiczAEbzpmnoJbkKoQOAel7WM7JaZMaONmK2d_1uwGzAuHVtZpzPVBa_XT5tVUjnXR-tdsPkRhxjNrn-MKDPTO9ca8fPG3JhVB_w9jevycfq6X35kq_fnl-Xi3WuecVj3nKgQlFVG6WxBM412yBloFhjsNS00sA456xiWgCqZs42wrSNbkusSuSaX5P7U-_k3dcOQ5SDDRr7Xo3odkFSIWqoSjbn_0ArxhNKIaH0hGrvQvBo5OTtoPxBUpDHeWUn07zyOK8EIVMk5_HkYHp3b9HLoC2OGlvrUUfZOvuH_QOPeoJY</recordid><startdate>20141015</startdate><enddate>20141015</enddate><creator>K, Sudarshan Kumar</creator><creator>C, Praveen</creator><creator>D Veerappa Gowda, G.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141015</creationdate><title>A finite volume method for a two-phase multicomponent polymer flooding</title><author>K, Sudarshan Kumar ; C, Praveen ; D Veerappa Gowda, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-d3017a1a8face4033c2be120a29fe4c16c02333262c70ea952b7fd9cd4e64e3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computation</topic><topic>Conservation laws</topic><topic>Discontinuous flux</topic><topic>Finite volume</topic><topic>Flux</topic><topic>Joining</topic><topic>Mathematical analysis</topic><topic>Maximum principle</topic><topic>Multicomponent</topic><topic>Polymer flooding</topic><topic>Riemann problems</topic><topic>Scalars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>K, Sudarshan Kumar</creatorcontrib><creatorcontrib>C, Praveen</creatorcontrib><creatorcontrib>D Veerappa Gowda, G.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>K, Sudarshan Kumar</au><au>C, Praveen</au><au>D Veerappa Gowda, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A finite volume method for a two-phase multicomponent polymer flooding</atitle><jtitle>Journal of computational physics</jtitle><date>2014-10-15</date><risdate>2014</risdate><volume>275</volume><spage>667</spage><epage>695</epage><pages>667-695</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Multicomponent polymer flooding used in enhanced oil recovery is governed by a system of coupled non-strictly hyperbolic conservation laws. In the presence of gravity, the flux functions need not be monotone and hence designing Godunov type upwind schemes is difficult and computationally expensive. To overcome this difficulty, we use the basic idea of discontinuous flux to reduce the coupled system into an uncoupled system of scalar conservation laws with discontinuous coefficients. For these scalar equations we use the DFLU flux developed in [5] to construct a second order scheme. The scheme is shown to satisfy a maximum principle and the performance of the scheme is shown on both one and two dimensional test problems.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2014.07.014</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2014-10, Vol.275, p.667-695 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_1778064253 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Computation Conservation laws Discontinuous flux Finite volume Flux Joining Mathematical analysis Maximum principle Multicomponent Polymer flooding Riemann problems Scalars |
title | A finite volume method for a two-phase multicomponent polymer flooding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A08%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20finite%20volume%20method%20for%20a%20two-phase%20multicomponent%20polymer%20flooding&rft.jtitle=Journal%20of%20computational%20physics&rft.au=K,%20Sudarshan%20Kumar&rft.date=2014-10-15&rft.volume=275&rft.spage=667&rft.epage=695&rft.pages=667-695&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2014.07.014&rft_dat=%3Cproquest_cross%3E1778064253%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762364210&rft_id=info:pmid/&rft_els_id=S0021999114004951&rfr_iscdi=true |