A finite volume method for a two-phase multicomponent polymer flooding

Multicomponent polymer flooding used in enhanced oil recovery is governed by a system of coupled non-strictly hyperbolic conservation laws. In the presence of gravity, the flux functions need not be monotone and hence designing Godunov type upwind schemes is difficult and computationally expensive....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2014-10, Vol.275, p.667-695
Hauptverfasser: K, Sudarshan Kumar, C, Praveen, D Veerappa Gowda, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 695
container_issue
container_start_page 667
container_title Journal of computational physics
container_volume 275
creator K, Sudarshan Kumar
C, Praveen
D Veerappa Gowda, G.
description Multicomponent polymer flooding used in enhanced oil recovery is governed by a system of coupled non-strictly hyperbolic conservation laws. In the presence of gravity, the flux functions need not be monotone and hence designing Godunov type upwind schemes is difficult and computationally expensive. To overcome this difficulty, we use the basic idea of discontinuous flux to reduce the coupled system into an uncoupled system of scalar conservation laws with discontinuous coefficients. For these scalar equations we use the DFLU flux developed in [5] to construct a second order scheme. The scheme is shown to satisfy a maximum principle and the performance of the scheme is shown on both one and two dimensional test problems.
doi_str_mv 10.1016/j.jcp.2014.07.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778064253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999114004951</els_id><sourcerecordid>1778064253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-d3017a1a8face4033c2be120a29fe4c16c02333262c70ea952b7fd9cd4e64e3c3</originalsourceid><addsrcrecordid>eNqNkM9LwzAYhoMoOH_8Ad569NL6JemaFk9jOBUGXvQcsvSLS2mbmmST_fdmzLN4euHjeV74XkLuKBQUaPXQFZ2eCga0LEAUKc7IjEIDORO0OiczAEbzpmnoJbkKoQOAel7WM7JaZMaONmK2d_1uwGzAuHVtZpzPVBa_XT5tVUjnXR-tdsPkRhxjNrn-MKDPTO9ca8fPG3JhVB_w9jevycfq6X35kq_fnl-Xi3WuecVj3nKgQlFVG6WxBM412yBloFhjsNS00sA456xiWgCqZs42wrSNbkusSuSaX5P7U-_k3dcOQ5SDDRr7Xo3odkFSIWqoSjbn_0ArxhNKIaH0hGrvQvBo5OTtoPxBUpDHeWUn07zyOK8EIVMk5_HkYHp3b9HLoC2OGlvrUUfZOvuH_QOPeoJY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762364210</pqid></control><display><type>article</type><title>A finite volume method for a two-phase multicomponent polymer flooding</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>K, Sudarshan Kumar ; C, Praveen ; D Veerappa Gowda, G.</creator><creatorcontrib>K, Sudarshan Kumar ; C, Praveen ; D Veerappa Gowda, G.</creatorcontrib><description>Multicomponent polymer flooding used in enhanced oil recovery is governed by a system of coupled non-strictly hyperbolic conservation laws. In the presence of gravity, the flux functions need not be monotone and hence designing Godunov type upwind schemes is difficult and computationally expensive. To overcome this difficulty, we use the basic idea of discontinuous flux to reduce the coupled system into an uncoupled system of scalar conservation laws with discontinuous coefficients. For these scalar equations we use the DFLU flux developed in [5] to construct a second order scheme. The scheme is shown to satisfy a maximum principle and the performance of the scheme is shown on both one and two dimensional test problems.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2014.07.014</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Computation ; Conservation laws ; Discontinuous flux ; Finite volume ; Flux ; Joining ; Mathematical analysis ; Maximum principle ; Multicomponent ; Polymer flooding ; Riemann problems ; Scalars</subject><ispartof>Journal of computational physics, 2014-10, Vol.275, p.667-695</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-d3017a1a8face4033c2be120a29fe4c16c02333262c70ea952b7fd9cd4e64e3c3</citedby><cites>FETCH-LOGICAL-c363t-d3017a1a8face4033c2be120a29fe4c16c02333262c70ea952b7fd9cd4e64e3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2014.07.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>K, Sudarshan Kumar</creatorcontrib><creatorcontrib>C, Praveen</creatorcontrib><creatorcontrib>D Veerappa Gowda, G.</creatorcontrib><title>A finite volume method for a two-phase multicomponent polymer flooding</title><title>Journal of computational physics</title><description>Multicomponent polymer flooding used in enhanced oil recovery is governed by a system of coupled non-strictly hyperbolic conservation laws. In the presence of gravity, the flux functions need not be monotone and hence designing Godunov type upwind schemes is difficult and computationally expensive. To overcome this difficulty, we use the basic idea of discontinuous flux to reduce the coupled system into an uncoupled system of scalar conservation laws with discontinuous coefficients. For these scalar equations we use the DFLU flux developed in [5] to construct a second order scheme. The scheme is shown to satisfy a maximum principle and the performance of the scheme is shown on both one and two dimensional test problems.</description><subject>Computation</subject><subject>Conservation laws</subject><subject>Discontinuous flux</subject><subject>Finite volume</subject><subject>Flux</subject><subject>Joining</subject><subject>Mathematical analysis</subject><subject>Maximum principle</subject><subject>Multicomponent</subject><subject>Polymer flooding</subject><subject>Riemann problems</subject><subject>Scalars</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkM9LwzAYhoMoOH_8Ad569NL6JemaFk9jOBUGXvQcsvSLS2mbmmST_fdmzLN4euHjeV74XkLuKBQUaPXQFZ2eCga0LEAUKc7IjEIDORO0OiczAEbzpmnoJbkKoQOAel7WM7JaZMaONmK2d_1uwGzAuHVtZpzPVBa_XT5tVUjnXR-tdsPkRhxjNrn-MKDPTO9ca8fPG3JhVB_w9jevycfq6X35kq_fnl-Xi3WuecVj3nKgQlFVG6WxBM412yBloFhjsNS00sA456xiWgCqZs42wrSNbkusSuSaX5P7U-_k3dcOQ5SDDRr7Xo3odkFSIWqoSjbn_0ArxhNKIaH0hGrvQvBo5OTtoPxBUpDHeWUn07zyOK8EIVMk5_HkYHp3b9HLoC2OGlvrUUfZOvuH_QOPeoJY</recordid><startdate>20141015</startdate><enddate>20141015</enddate><creator>K, Sudarshan Kumar</creator><creator>C, Praveen</creator><creator>D Veerappa Gowda, G.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141015</creationdate><title>A finite volume method for a two-phase multicomponent polymer flooding</title><author>K, Sudarshan Kumar ; C, Praveen ; D Veerappa Gowda, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-d3017a1a8face4033c2be120a29fe4c16c02333262c70ea952b7fd9cd4e64e3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computation</topic><topic>Conservation laws</topic><topic>Discontinuous flux</topic><topic>Finite volume</topic><topic>Flux</topic><topic>Joining</topic><topic>Mathematical analysis</topic><topic>Maximum principle</topic><topic>Multicomponent</topic><topic>Polymer flooding</topic><topic>Riemann problems</topic><topic>Scalars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>K, Sudarshan Kumar</creatorcontrib><creatorcontrib>C, Praveen</creatorcontrib><creatorcontrib>D Veerappa Gowda, G.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>K, Sudarshan Kumar</au><au>C, Praveen</au><au>D Veerappa Gowda, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A finite volume method for a two-phase multicomponent polymer flooding</atitle><jtitle>Journal of computational physics</jtitle><date>2014-10-15</date><risdate>2014</risdate><volume>275</volume><spage>667</spage><epage>695</epage><pages>667-695</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Multicomponent polymer flooding used in enhanced oil recovery is governed by a system of coupled non-strictly hyperbolic conservation laws. In the presence of gravity, the flux functions need not be monotone and hence designing Godunov type upwind schemes is difficult and computationally expensive. To overcome this difficulty, we use the basic idea of discontinuous flux to reduce the coupled system into an uncoupled system of scalar conservation laws with discontinuous coefficients. For these scalar equations we use the DFLU flux developed in [5] to construct a second order scheme. The scheme is shown to satisfy a maximum principle and the performance of the scheme is shown on both one and two dimensional test problems.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2014.07.014</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2014-10, Vol.275, p.667-695
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_1778064253
source ScienceDirect Journals (5 years ago - present)
subjects Computation
Conservation laws
Discontinuous flux
Finite volume
Flux
Joining
Mathematical analysis
Maximum principle
Multicomponent
Polymer flooding
Riemann problems
Scalars
title A finite volume method for a two-phase multicomponent polymer flooding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A08%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20finite%20volume%20method%20for%20a%20two-phase%20multicomponent%20polymer%20flooding&rft.jtitle=Journal%20of%20computational%20physics&rft.au=K,%20Sudarshan%20Kumar&rft.date=2014-10-15&rft.volume=275&rft.spage=667&rft.epage=695&rft.pages=667-695&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2014.07.014&rft_dat=%3Cproquest_cross%3E1778064253%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762364210&rft_id=info:pmid/&rft_els_id=S0021999114004951&rfr_iscdi=true