Mesh adaptive direct search with second directional derivative-based Hessian update

The subject of this paper is inequality constrained black-box optimization with mesh adaptive direct search (MADS). The MADS search step can include additional strategies for accelerating the convergence and improving the accuracy of the solution. The strategy proposed in this paper involves buildin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational optimization and applications 2015-12, Vol.62 (3), p.693-715
Hauptverfasser: Bűrmen, Árpád, Olenšek, Jernej, Tuma, Tadej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 715
container_issue 3
container_start_page 693
container_title Computational optimization and applications
container_volume 62
creator Bűrmen, Árpád
Olenšek, Jernej
Tuma, Tadej
description The subject of this paper is inequality constrained black-box optimization with mesh adaptive direct search (MADS). The MADS search step can include additional strategies for accelerating the convergence and improving the accuracy of the solution. The strategy proposed in this paper involves building a quadratic model of the function and linear models of the constraints. The quadratic model is built by means of a second directional derivative-based Hessian update. The linear terms are obtained by linear regression. The resulting quadratic programming (QP) problem is solved with a dedicated solver and the original functions are evaluated at the QP solution. The proposed search strategy is computationally less expensive than the quadratically constrained QP strategy in the state of the art MADS implementation (NOMAD). The proposed MADS variant (QPMADS) and NOMAD are compared on four sets of test problems. QPMADS outperforms NOMAD on all four of them for all but the smallest computational budgets.
doi_str_mv 10.1007/s10589-015-9753-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778061131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1778061131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-39927807436a625bc17f904c52136b9afb1bd0786250c278edfea55515abaf4d3</originalsourceid><addsrcrecordid>eNp1kMFKxDAQhoMouK4-gLeCFy_RmaZpmqMs6gorHtRzSJPU7bLb1qRd8e1N6R5E8DQD8_0_zEfIJcINAojbgMALSQE5lYIzyo_IDLlgNC1kdkxmINOc5gDslJyFsAEAKVg6I6_PLqwTbXXX13uX2No70yfBaW_WyVfdr-Nu2sYeLnXb6G1ina_3egzQUgdnk6ULodZNMnRW9-6cnFR6G9zFYc7J-8P922JJVy-PT4u7FTUZyp4yKVNRgMhYrvOUlwZFJSEzPEWWl1JXJZYWRBFvYCLpbOU05xy5LnWVWTYn11Nv59vPwYVe7epg3HarG9cOQaGI9Tkiw4he_UE37eDjLyPFMplnHHikcKKMb0PwrlKdr3fafysENWpWk2YVNatRsxoz6ZQJkW0-nP_V_G_oB0Asfz8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1734964505</pqid></control><display><type>article</type><title>Mesh adaptive direct search with second directional derivative-based Hessian update</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Bűrmen, Árpád ; Olenšek, Jernej ; Tuma, Tadej</creator><creatorcontrib>Bűrmen, Árpád ; Olenšek, Jernej ; Tuma, Tadej</creatorcontrib><description>The subject of this paper is inequality constrained black-box optimization with mesh adaptive direct search (MADS). The MADS search step can include additional strategies for accelerating the convergence and improving the accuracy of the solution. The strategy proposed in this paper involves building a quadratic model of the function and linear models of the constraints. The quadratic model is built by means of a second directional derivative-based Hessian update. The linear terms are obtained by linear regression. The resulting quadratic programming (QP) problem is solved with a dedicated solver and the original functions are evaluated at the QP solution. The proposed search strategy is computationally less expensive than the quadratically constrained QP strategy in the state of the art MADS implementation (NOMAD). The proposed MADS variant (QPMADS) and NOMAD are compared on four sets of test problems. QPMADS outperforms NOMAD on all four of them for all but the smallest computational budgets.</description><identifier>ISSN: 0926-6003</identifier><identifier>EISSN: 1573-2894</identifier><identifier>DOI: 10.1007/s10589-015-9753-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Analysis ; Approximation ; Computation ; Computer science ; Constraints ; Construction ; Convex and Discrete Geometry ; Management Science ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Operations Research ; Operations Research/Decision Theory ; Optimization ; Quadratic programming ; Searching ; Statistics ; Strategy ; Studies</subject><ispartof>Computational optimization and applications, 2015-12, Vol.62 (3), p.693-715</ispartof><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-39927807436a625bc17f904c52136b9afb1bd0786250c278edfea55515abaf4d3</citedby><cites>FETCH-LOGICAL-c419t-39927807436a625bc17f904c52136b9afb1bd0786250c278edfea55515abaf4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10589-015-9753-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10589-015-9753-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bűrmen, Árpád</creatorcontrib><creatorcontrib>Olenšek, Jernej</creatorcontrib><creatorcontrib>Tuma, Tadej</creatorcontrib><title>Mesh adaptive direct search with second directional derivative-based Hessian update</title><title>Computational optimization and applications</title><addtitle>Comput Optim Appl</addtitle><description>The subject of this paper is inequality constrained black-box optimization with mesh adaptive direct search (MADS). The MADS search step can include additional strategies for accelerating the convergence and improving the accuracy of the solution. The strategy proposed in this paper involves building a quadratic model of the function and linear models of the constraints. The quadratic model is built by means of a second directional derivative-based Hessian update. The linear terms are obtained by linear regression. The resulting quadratic programming (QP) problem is solved with a dedicated solver and the original functions are evaluated at the QP solution. The proposed search strategy is computationally less expensive than the quadratically constrained QP strategy in the state of the art MADS implementation (NOMAD). The proposed MADS variant (QPMADS) and NOMAD are compared on four sets of test problems. QPMADS outperforms NOMAD on all four of them for all but the smallest computational budgets.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Approximation</subject><subject>Computation</subject><subject>Computer science</subject><subject>Constraints</subject><subject>Construction</subject><subject>Convex and Discrete Geometry</subject><subject>Management Science</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Quadratic programming</subject><subject>Searching</subject><subject>Statistics</subject><subject>Strategy</subject><subject>Studies</subject><issn>0926-6003</issn><issn>1573-2894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMFKxDAQhoMouK4-gLeCFy_RmaZpmqMs6gorHtRzSJPU7bLb1qRd8e1N6R5E8DQD8_0_zEfIJcINAojbgMALSQE5lYIzyo_IDLlgNC1kdkxmINOc5gDslJyFsAEAKVg6I6_PLqwTbXXX13uX2No70yfBaW_WyVfdr-Nu2sYeLnXb6G1ina_3egzQUgdnk6ULodZNMnRW9-6cnFR6G9zFYc7J-8P922JJVy-PT4u7FTUZyp4yKVNRgMhYrvOUlwZFJSEzPEWWl1JXJZYWRBFvYCLpbOU05xy5LnWVWTYn11Nv59vPwYVe7epg3HarG9cOQaGI9Tkiw4he_UE37eDjLyPFMplnHHikcKKMb0PwrlKdr3fafysENWpWk2YVNatRsxoz6ZQJkW0-nP_V_G_oB0Asfz8</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Bűrmen, Árpád</creator><creator>Olenšek, Jernej</creator><creator>Tuma, Tadej</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20151201</creationdate><title>Mesh adaptive direct search with second directional derivative-based Hessian update</title><author>Bűrmen, Árpád ; Olenšek, Jernej ; Tuma, Tadej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-39927807436a625bc17f904c52136b9afb1bd0786250c278edfea55515abaf4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Approximation</topic><topic>Computation</topic><topic>Computer science</topic><topic>Constraints</topic><topic>Construction</topic><topic>Convex and Discrete Geometry</topic><topic>Management Science</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Quadratic programming</topic><topic>Searching</topic><topic>Statistics</topic><topic>Strategy</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bűrmen, Árpád</creatorcontrib><creatorcontrib>Olenšek, Jernej</creatorcontrib><creatorcontrib>Tuma, Tadej</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational optimization and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bűrmen, Árpád</au><au>Olenšek, Jernej</au><au>Tuma, Tadej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesh adaptive direct search with second directional derivative-based Hessian update</atitle><jtitle>Computational optimization and applications</jtitle><stitle>Comput Optim Appl</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>62</volume><issue>3</issue><spage>693</spage><epage>715</epage><pages>693-715</pages><issn>0926-6003</issn><eissn>1573-2894</eissn><abstract>The subject of this paper is inequality constrained black-box optimization with mesh adaptive direct search (MADS). The MADS search step can include additional strategies for accelerating the convergence and improving the accuracy of the solution. The strategy proposed in this paper involves building a quadratic model of the function and linear models of the constraints. The quadratic model is built by means of a second directional derivative-based Hessian update. The linear terms are obtained by linear regression. The resulting quadratic programming (QP) problem is solved with a dedicated solver and the original functions are evaluated at the QP solution. The proposed search strategy is computationally less expensive than the quadratically constrained QP strategy in the state of the art MADS implementation (NOMAD). The proposed MADS variant (QPMADS) and NOMAD are compared on four sets of test problems. QPMADS outperforms NOMAD on all four of them for all but the smallest computational budgets.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10589-015-9753-5</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0926-6003
ispartof Computational optimization and applications, 2015-12, Vol.62 (3), p.693-715
issn 0926-6003
1573-2894
language eng
recordid cdi_proquest_miscellaneous_1778061131
source Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Algorithms
Analysis
Approximation
Computation
Computer science
Constraints
Construction
Convex and Discrete Geometry
Management Science
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Operations Research
Operations Research/Decision Theory
Optimization
Quadratic programming
Searching
Statistics
Strategy
Studies
title Mesh adaptive direct search with second directional derivative-based Hessian update
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A05%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesh%20adaptive%20direct%20search%20with%20second%20directional%20derivative-based%20Hessian%20update&rft.jtitle=Computational%20optimization%20and%20applications&rft.au=B%C5%B1rmen,%20%C3%81rp%C3%A1d&rft.date=2015-12-01&rft.volume=62&rft.issue=3&rft.spage=693&rft.epage=715&rft.pages=693-715&rft.issn=0926-6003&rft.eissn=1573-2894&rft_id=info:doi/10.1007/s10589-015-9753-5&rft_dat=%3Cproquest_cross%3E1778061131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1734964505&rft_id=info:pmid/&rfr_iscdi=true