Uncertainty reevaluation in determining the volume of a silicon sphere by spherical harmonics in an Avogadro project

To determine the Avogadro constant with a target relative uncertainty of 2 x 10-s, the uncertainty component of the silicon sphere's volume introduced by the spherical harmonics method, which is usually used in determining the sphere's volume, is reevaluated. By means of representing the shape of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2011-09, Vol.20 (9), p.152-158
1. Verfasser: 张继涛 吴学健 李岩
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 158
container_issue 9
container_start_page 152
container_title Chinese physics B
container_volume 20
creator 张继涛 吴学健 李岩
description To determine the Avogadro constant with a target relative uncertainty of 2 x 10-s, the uncertainty component of the silicon sphere's volume introduced by the spherical harmonics method, which is usually used in determining the sphere's volume, is reevaluated. By means of representing the shape of the silicon sphere by an ellipsoid with Gaussian white noise in its diameters, the uncertainty of the current mapping methods based on the spherical harmonics theory can be estimated theoretically. It is evidenced that the uncertainty component attributed to the current mapping method is underestimated. To eliminate this effect as much as possible, the number of mapping points should be increased to more than before. Moreover, a new mapping method is proposed to accomplish the equal-area mapping with large number points on the silicon sphere.
doi_str_mv 10.1088/1674-1056/20/9/090601
format Article
fullrecord <record><control><sourceid>proquest_iop_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778052692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>39130765</cqvip_id><sourcerecordid>1778052692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-66e3233ea61eefbeae3ac9a49fe76897057458470e491bdadb9e50ca19f420983</originalsourceid><addsrcrecordid>eNqNkcFq3DAQhkVpodu0j1BQbz3U2ZFly9IxhKYtBHJpzmJWHu8q2JIjaRf27evFIaccepo5fN_M8A9jXwVcC9B6K1TXVAJata1ha7ZgQIF4xzY1tLqSWjbv2eaV-cg-5fwEoATUcsPKY3CUCvpQzjwRnXA8YvExcB94T4XS5IMPe14OxE9xPE7E48CRZz96t2B5PlAivjuvnXc48gOmKQbv8mUIBn5zinvsU-Rzik_kymf2YcAx05eXesUe737-vf1d3T_8-nN7c185KXWplCJZS0moBNGwIySJzmBjBuqUNh20XdPqpgNqjNj12O8MteBQmKGpwWh5xb6vc5e9z0fKxU4-OxpHDBSP2Yqu09DWytQL2q6oSzHnRIOdk58wna0Ae0nZXhK0lwRtDdbYNeXFg9Xzcf5v5ccbyluonfthwb-9XHaIYf-8_OJVkkZI6FQr_wHEj5jE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778052692</pqid></control><display><type>article</type><title>Uncertainty reevaluation in determining the volume of a silicon sphere by spherical harmonics in an Avogadro project</title><source>IOP Publishing Journals</source><creator>张继涛 吴学健 李岩</creator><creatorcontrib>张继涛 吴学健 李岩</creatorcontrib><description>To determine the Avogadro constant with a target relative uncertainty of 2 x 10-s, the uncertainty component of the silicon sphere's volume introduced by the spherical harmonics method, which is usually used in determining the sphere's volume, is reevaluated. By means of representing the shape of the silicon sphere by an ellipsoid with Gaussian white noise in its diameters, the uncertainty of the current mapping methods based on the spherical harmonics theory can be estimated theoretically. It is evidenced that the uncertainty component attributed to the current mapping method is underestimated. To eliminate this effect as much as possible, the number of mapping points should be increased to more than before. Moreover, a new mapping method is proposed to accomplish the equal-area mapping with large number points on the silicon sphere.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><identifier>DOI: 10.1088/1674-1056/20/9/090601</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Ellipsoids ; Gaussian ; Mapping ; Silicon ; Spherical harmonics ; Uncertainty ; White noise ; 不确定度分量 ; 体积 ; 映射方法 ; 球面 ; 硅球 ; 评估 ; 谐波 ; 阿伏伽德罗常数</subject><ispartof>Chinese physics B, 2011-09, Vol.20 (9), p.152-158</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c338t-66e3233ea61eefbeae3ac9a49fe76897057458470e491bdadb9e50ca19f420983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1674-1056/20/9/090601/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53910</link.rule.ids></links><search><creatorcontrib>张继涛 吴学健 李岩</creatorcontrib><title>Uncertainty reevaluation in determining the volume of a silicon sphere by spherical harmonics in an Avogadro project</title><title>Chinese physics B</title><addtitle>Chinese Physics</addtitle><description>To determine the Avogadro constant with a target relative uncertainty of 2 x 10-s, the uncertainty component of the silicon sphere's volume introduced by the spherical harmonics method, which is usually used in determining the sphere's volume, is reevaluated. By means of representing the shape of the silicon sphere by an ellipsoid with Gaussian white noise in its diameters, the uncertainty of the current mapping methods based on the spherical harmonics theory can be estimated theoretically. It is evidenced that the uncertainty component attributed to the current mapping method is underestimated. To eliminate this effect as much as possible, the number of mapping points should be increased to more than before. Moreover, a new mapping method is proposed to accomplish the equal-area mapping with large number points on the silicon sphere.</description><subject>Ellipsoids</subject><subject>Gaussian</subject><subject>Mapping</subject><subject>Silicon</subject><subject>Spherical harmonics</subject><subject>Uncertainty</subject><subject>White noise</subject><subject>不确定度分量</subject><subject>体积</subject><subject>映射方法</subject><subject>球面</subject><subject>硅球</subject><subject>评估</subject><subject>谐波</subject><subject>阿伏伽德罗常数</subject><issn>1674-1056</issn><issn>2058-3834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkcFq3DAQhkVpodu0j1BQbz3U2ZFly9IxhKYtBHJpzmJWHu8q2JIjaRf27evFIaccepo5fN_M8A9jXwVcC9B6K1TXVAJata1ha7ZgQIF4xzY1tLqSWjbv2eaV-cg-5fwEoATUcsPKY3CUCvpQzjwRnXA8YvExcB94T4XS5IMPe14OxE9xPE7E48CRZz96t2B5PlAivjuvnXc48gOmKQbv8mUIBn5zinvsU-Rzik_kymf2YcAx05eXesUe737-vf1d3T_8-nN7c185KXWplCJZS0moBNGwIySJzmBjBuqUNh20XdPqpgNqjNj12O8MteBQmKGpwWh5xb6vc5e9z0fKxU4-OxpHDBSP2Yqu09DWytQL2q6oSzHnRIOdk58wna0Ae0nZXhK0lwRtDdbYNeXFg9Xzcf5v5ccbyluonfthwb-9XHaIYf-8_OJVkkZI6FQr_wHEj5jE</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>张继涛 吴学健 李岩</creator><general>IOP Publishing</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20110901</creationdate><title>Uncertainty reevaluation in determining the volume of a silicon sphere by spherical harmonics in an Avogadro project</title><author>张继涛 吴学健 李岩</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-66e3233ea61eefbeae3ac9a49fe76897057458470e491bdadb9e50ca19f420983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Ellipsoids</topic><topic>Gaussian</topic><topic>Mapping</topic><topic>Silicon</topic><topic>Spherical harmonics</topic><topic>Uncertainty</topic><topic>White noise</topic><topic>不确定度分量</topic><topic>体积</topic><topic>映射方法</topic><topic>球面</topic><topic>硅球</topic><topic>评估</topic><topic>谐波</topic><topic>阿伏伽德罗常数</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>张继涛 吴学健 李岩</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>张继涛 吴学健 李岩</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty reevaluation in determining the volume of a silicon sphere by spherical harmonics in an Avogadro project</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chinese Physics</addtitle><date>2011-09-01</date><risdate>2011</risdate><volume>20</volume><issue>9</issue><spage>152</spage><epage>158</epage><pages>152-158</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><abstract>To determine the Avogadro constant with a target relative uncertainty of 2 x 10-s, the uncertainty component of the silicon sphere's volume introduced by the spherical harmonics method, which is usually used in determining the sphere's volume, is reevaluated. By means of representing the shape of the silicon sphere by an ellipsoid with Gaussian white noise in its diameters, the uncertainty of the current mapping methods based on the spherical harmonics theory can be estimated theoretically. It is evidenced that the uncertainty component attributed to the current mapping method is underestimated. To eliminate this effect as much as possible, the number of mapping points should be increased to more than before. Moreover, a new mapping method is proposed to accomplish the equal-area mapping with large number points on the silicon sphere.</abstract><pub>IOP Publishing</pub><doi>10.1088/1674-1056/20/9/090601</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-1056
ispartof Chinese physics B, 2011-09, Vol.20 (9), p.152-158
issn 1674-1056
2058-3834
language eng
recordid cdi_proquest_miscellaneous_1778052692
source IOP Publishing Journals
subjects Ellipsoids
Gaussian
Mapping
Silicon
Spherical harmonics
Uncertainty
White noise
不确定度分量
体积
映射方法
球面
硅球
评估
谐波
阿伏伽德罗常数
title Uncertainty reevaluation in determining the volume of a silicon sphere by spherical harmonics in an Avogadro project
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20reevaluation%20in%20determining%20the%20volume%20of%20a%20silicon%20sphere%20by%20spherical%20harmonics%20in%20an%20Avogadro%20project&rft.jtitle=Chinese%20physics%20B&rft.au=%E5%BC%A0%E7%BB%A7%E6%B6%9B%20%E5%90%B4%E5%AD%A6%E5%81%A5%20%E6%9D%8E%E5%B2%A9&rft.date=2011-09-01&rft.volume=20&rft.issue=9&rft.spage=152&rft.epage=158&rft.pages=152-158&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/10.1088/1674-1056/20/9/090601&rft_dat=%3Cproquest_iop_p%3E1778052692%3C/proquest_iop_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1778052692&rft_id=info:pmid/&rft_cqvip_id=39130765&rfr_iscdi=true