Uncertainty reevaluation in determining the volume of a silicon sphere by spherical harmonics in an Avogadro project
To determine the Avogadro constant with a target relative uncertainty of 2 x 10-s, the uncertainty component of the silicon sphere's volume introduced by the spherical harmonics method, which is usually used in determining the sphere's volume, is reevaluated. By means of representing the shape of th...
Gespeichert in:
Veröffentlicht in: | Chinese physics B 2011-09, Vol.20 (9), p.152-158 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 158 |
---|---|
container_issue | 9 |
container_start_page | 152 |
container_title | Chinese physics B |
container_volume | 20 |
creator | 张继涛 吴学健 李岩 |
description | To determine the Avogadro constant with a target relative uncertainty of 2 x 10-s, the uncertainty component of the silicon sphere's volume introduced by the spherical harmonics method, which is usually used in determining the sphere's volume, is reevaluated. By means of representing the shape of the silicon sphere by an ellipsoid with Gaussian white noise in its diameters, the uncertainty of the current mapping methods based on the spherical harmonics theory can be estimated theoretically. It is evidenced that the uncertainty component attributed to the current mapping method is underestimated. To eliminate this effect as much as possible, the number of mapping points should be increased to more than before. Moreover, a new mapping method is proposed to accomplish the equal-area mapping with large number points on the silicon sphere. |
doi_str_mv | 10.1088/1674-1056/20/9/090601 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778052692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>39130765</cqvip_id><sourcerecordid>1778052692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-66e3233ea61eefbeae3ac9a49fe76897057458470e491bdadb9e50ca19f420983</originalsourceid><addsrcrecordid>eNqNkcFq3DAQhkVpodu0j1BQbz3U2ZFly9IxhKYtBHJpzmJWHu8q2JIjaRf27evFIaccepo5fN_M8A9jXwVcC9B6K1TXVAJata1ha7ZgQIF4xzY1tLqSWjbv2eaV-cg-5fwEoATUcsPKY3CUCvpQzjwRnXA8YvExcB94T4XS5IMPe14OxE9xPE7E48CRZz96t2B5PlAivjuvnXc48gOmKQbv8mUIBn5zinvsU-Rzik_kymf2YcAx05eXesUe737-vf1d3T_8-nN7c185KXWplCJZS0moBNGwIySJzmBjBuqUNh20XdPqpgNqjNj12O8MteBQmKGpwWh5xb6vc5e9z0fKxU4-OxpHDBSP2Yqu09DWytQL2q6oSzHnRIOdk58wna0Ae0nZXhK0lwRtDdbYNeXFg9Xzcf5v5ccbyluonfthwb-9XHaIYf-8_OJVkkZI6FQr_wHEj5jE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778052692</pqid></control><display><type>article</type><title>Uncertainty reevaluation in determining the volume of a silicon sphere by spherical harmonics in an Avogadro project</title><source>IOP Publishing Journals</source><creator>张继涛 吴学健 李岩</creator><creatorcontrib>张继涛 吴学健 李岩</creatorcontrib><description>To determine the Avogadro constant with a target relative uncertainty of 2 x 10-s, the uncertainty component of the silicon sphere's volume introduced by the spherical harmonics method, which is usually used in determining the sphere's volume, is reevaluated. By means of representing the shape of the silicon sphere by an ellipsoid with Gaussian white noise in its diameters, the uncertainty of the current mapping methods based on the spherical harmonics theory can be estimated theoretically. It is evidenced that the uncertainty component attributed to the current mapping method is underestimated. To eliminate this effect as much as possible, the number of mapping points should be increased to more than before. Moreover, a new mapping method is proposed to accomplish the equal-area mapping with large number points on the silicon sphere.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><identifier>DOI: 10.1088/1674-1056/20/9/090601</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Ellipsoids ; Gaussian ; Mapping ; Silicon ; Spherical harmonics ; Uncertainty ; White noise ; 不确定度分量 ; 体积 ; 映射方法 ; 球面 ; 硅球 ; 评估 ; 谐波 ; 阿伏伽德罗常数</subject><ispartof>Chinese physics B, 2011-09, Vol.20 (9), p.152-158</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c338t-66e3233ea61eefbeae3ac9a49fe76897057458470e491bdadb9e50ca19f420983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1674-1056/20/9/090601/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53910</link.rule.ids></links><search><creatorcontrib>张继涛 吴学健 李岩</creatorcontrib><title>Uncertainty reevaluation in determining the volume of a silicon sphere by spherical harmonics in an Avogadro project</title><title>Chinese physics B</title><addtitle>Chinese Physics</addtitle><description>To determine the Avogadro constant with a target relative uncertainty of 2 x 10-s, the uncertainty component of the silicon sphere's volume introduced by the spherical harmonics method, which is usually used in determining the sphere's volume, is reevaluated. By means of representing the shape of the silicon sphere by an ellipsoid with Gaussian white noise in its diameters, the uncertainty of the current mapping methods based on the spherical harmonics theory can be estimated theoretically. It is evidenced that the uncertainty component attributed to the current mapping method is underestimated. To eliminate this effect as much as possible, the number of mapping points should be increased to more than before. Moreover, a new mapping method is proposed to accomplish the equal-area mapping with large number points on the silicon sphere.</description><subject>Ellipsoids</subject><subject>Gaussian</subject><subject>Mapping</subject><subject>Silicon</subject><subject>Spherical harmonics</subject><subject>Uncertainty</subject><subject>White noise</subject><subject>不确定度分量</subject><subject>体积</subject><subject>映射方法</subject><subject>球面</subject><subject>硅球</subject><subject>评估</subject><subject>谐波</subject><subject>阿伏伽德罗常数</subject><issn>1674-1056</issn><issn>2058-3834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkcFq3DAQhkVpodu0j1BQbz3U2ZFly9IxhKYtBHJpzmJWHu8q2JIjaRf27evFIaccepo5fN_M8A9jXwVcC9B6K1TXVAJata1ha7ZgQIF4xzY1tLqSWjbv2eaV-cg-5fwEoATUcsPKY3CUCvpQzjwRnXA8YvExcB94T4XS5IMPe14OxE9xPE7E48CRZz96t2B5PlAivjuvnXc48gOmKQbv8mUIBn5zinvsU-Rzik_kymf2YcAx05eXesUe737-vf1d3T_8-nN7c185KXWplCJZS0moBNGwIySJzmBjBuqUNh20XdPqpgNqjNj12O8MteBQmKGpwWh5xb6vc5e9z0fKxU4-OxpHDBSP2Yqu09DWytQL2q6oSzHnRIOdk58wna0Ae0nZXhK0lwRtDdbYNeXFg9Xzcf5v5ccbyluonfthwb-9XHaIYf-8_OJVkkZI6FQr_wHEj5jE</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>张继涛 吴学健 李岩</creator><general>IOP Publishing</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20110901</creationdate><title>Uncertainty reevaluation in determining the volume of a silicon sphere by spherical harmonics in an Avogadro project</title><author>张继涛 吴学健 李岩</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-66e3233ea61eefbeae3ac9a49fe76897057458470e491bdadb9e50ca19f420983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Ellipsoids</topic><topic>Gaussian</topic><topic>Mapping</topic><topic>Silicon</topic><topic>Spherical harmonics</topic><topic>Uncertainty</topic><topic>White noise</topic><topic>不确定度分量</topic><topic>体积</topic><topic>映射方法</topic><topic>球面</topic><topic>硅球</topic><topic>评估</topic><topic>谐波</topic><topic>阿伏伽德罗常数</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>张继涛 吴学健 李岩</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>张继涛 吴学健 李岩</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty reevaluation in determining the volume of a silicon sphere by spherical harmonics in an Avogadro project</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chinese Physics</addtitle><date>2011-09-01</date><risdate>2011</risdate><volume>20</volume><issue>9</issue><spage>152</spage><epage>158</epage><pages>152-158</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><abstract>To determine the Avogadro constant with a target relative uncertainty of 2 x 10-s, the uncertainty component of the silicon sphere's volume introduced by the spherical harmonics method, which is usually used in determining the sphere's volume, is reevaluated. By means of representing the shape of the silicon sphere by an ellipsoid with Gaussian white noise in its diameters, the uncertainty of the current mapping methods based on the spherical harmonics theory can be estimated theoretically. It is evidenced that the uncertainty component attributed to the current mapping method is underestimated. To eliminate this effect as much as possible, the number of mapping points should be increased to more than before. Moreover, a new mapping method is proposed to accomplish the equal-area mapping with large number points on the silicon sphere.</abstract><pub>IOP Publishing</pub><doi>10.1088/1674-1056/20/9/090601</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-1056 |
ispartof | Chinese physics B, 2011-09, Vol.20 (9), p.152-158 |
issn | 1674-1056 2058-3834 |
language | eng |
recordid | cdi_proquest_miscellaneous_1778052692 |
source | IOP Publishing Journals |
subjects | Ellipsoids Gaussian Mapping Silicon Spherical harmonics Uncertainty White noise 不确定度分量 体积 映射方法 球面 硅球 评估 谐波 阿伏伽德罗常数 |
title | Uncertainty reevaluation in determining the volume of a silicon sphere by spherical harmonics in an Avogadro project |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20reevaluation%20in%20determining%20the%20volume%20of%20a%20silicon%20sphere%20by%20spherical%20harmonics%20in%20an%20Avogadro%20project&rft.jtitle=Chinese%20physics%20B&rft.au=%E5%BC%A0%E7%BB%A7%E6%B6%9B%20%E5%90%B4%E5%AD%A6%E5%81%A5%20%E6%9D%8E%E5%B2%A9&rft.date=2011-09-01&rft.volume=20&rft.issue=9&rft.spage=152&rft.epage=158&rft.pages=152-158&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/10.1088/1674-1056/20/9/090601&rft_dat=%3Cproquest_iop_p%3E1778052692%3C/proquest_iop_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1778052692&rft_id=info:pmid/&rft_cqvip_id=39130765&rfr_iscdi=true |