Continuous cyclohexane oxidation to cyclohexanol using a novel cytochrome P450 monooxygenase from Acidovorax sp. CHX100 in recombinant P. taiwanensis VLB120 biofilms
ABSTRACT The applications of biocatalysts in chemical industries are characterized by activity, selectivity, and stability. One key strategy to achieve high biocatalytic activity is the identification of novel enzymes with kinetics optimized for organic synthesis by Nature. The isolation of novel cy...
Gespeichert in:
Veröffentlicht in: | Biotechnology and bioengineering 2016-01, Vol.113 (1), p.52-61 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 61 |
---|---|
container_issue | 1 |
container_start_page | 52 |
container_title | Biotechnology and bioengineering |
container_volume | 113 |
creator | Karande, Rohan Debor, Linde Salamanca, Diego Bogdahn, Fabian Engesser, Karl-Heinrich Buehler, Katja Schmid, Andreas |
description | ABSTRACT
The applications of biocatalysts in chemical industries are characterized by activity, selectivity, and stability. One key strategy to achieve high biocatalytic activity is the identification of novel enzymes with kinetics optimized for organic synthesis by Nature. The isolation of novel cytochrome P450 monooxygenase genes from Acidovorax sp. CHX100 and their functional expression in recombinant Pseudomonas taiwanensis VLB120 enabled efficient oxidation of cyclohexane to cyclohexanol. Although initial resting cell activities of 20 U gCDW−1 were achieved, the rapid decrease in catalytic activity due to the toxicity of cyclohexane prevented synthetic applications. Cyclohexane toxicity was reduced and cellular activities stabilized over the reaction time by delivering the toxic substrate through the vapor phase and by balancing the aqueous phase mass transfer with the cellular conversion rate. The potential of this novel CYP enzyme was exploited by transferring the shake flask reaction to an aqueous‐air segmented flow biofilm membrane reactor for maximizing productivity. Cyclohexane was continuously delivered via the silicone membrane. This ensured lower reactant toxicity and continuous product formation at an average volumetric productivity of 0.4 g Ltube−1 h−1 for several days. This highlights the potential of combining a powerful catalyst with a beneficial reactor design to overcome critical issues of cyclohexane oxidation to cyclohexanol. It opens new opportunities for biocatalytic transformations of compounds which are toxic, volatile, and have low solubility in water. Biotechnol. Bioeng. 2016;113: 52–61. © 2015 Wiley Periodicals, Inc.
The combination of whole cell biocatalysis with specific reaction concepts overcomes substrate toxicity, volatility and low water solubility issues for cyclohexane oxidation to cyclohexanol. The isolation of novel cytochrome P450 monooxygenase genes from Acidovorax sp. CHX100 and their functional expression in recombinant Pseudomonas taiwanensis VLB120 enabled efficient oxidation of cyclohexane. The application of P. taiwanensis VLB120 biofilms in a segmented flow membrane reactor ensured lower reactant toxicity and continuous product formation at an average volumetric productivity of 0.4 g Ltube−1 h−1 for several days. |
doi_str_mv | 10.1002/bit.25696 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778049403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1751205629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5646-679502877edae7cf4b28fd6c42b68a9ad1362f7d4a74964012f7f96899eaae363</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0EotPCghdAltjQRaa245942QaYVoygguFnZzmO07ok9mAn7cwD8Z4Ypq0QEhIr6-p89_jeewB4htEcI0SOGjfOCeOSPwAzjKQoEJHoIZghhHhRMkn2wH5KV7kUFeePwR7hmJWY0hn4UQc_Oj-FKUGzNX24tBvtLQwb1-rRBQ_H8IcQejgl5y-ghj5c2z5LYzCXMQwWnlOG4BB8CJvthfU6WdhlAR4b14brEPUGpvUc1qdf89DQeRitCUPjvPYjPJ_DUbub_LVPLsHPyxNMEGxc6Fw_pCfgUaf7ZJ_evgfg05vXq_q0WL5fnNXHy8IwTnnBhWSIVELYVlthOtqQqmu5oaThlZa6xSUnnWipFlRyinAuOskrKa3WtuTlAXi5813H8H2yaVSDS8b2fZ4rX0hhISpEJUXlf6Asb8A4kRl98Rd6Fabo8yKZolXFBC1xpg53lIkhpWg7tY5u0HGrMFK_YlY5ZvU75sw-v3WcmsG29-Rdrhk42gE3rrfbfzupk7PVnWWx63BptJv7Dh2_KS5KwdSXdwvFV2_rxccPr9Si_AkvMMDs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1748857431</pqid></control><display><type>article</type><title>Continuous cyclohexane oxidation to cyclohexanol using a novel cytochrome P450 monooxygenase from Acidovorax sp. CHX100 in recombinant P. taiwanensis VLB120 biofilms</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Karande, Rohan ; Debor, Linde ; Salamanca, Diego ; Bogdahn, Fabian ; Engesser, Karl-Heinrich ; Buehler, Katja ; Schmid, Andreas</creator><creatorcontrib>Karande, Rohan ; Debor, Linde ; Salamanca, Diego ; Bogdahn, Fabian ; Engesser, Karl-Heinrich ; Buehler, Katja ; Schmid, Andreas</creatorcontrib><description>ABSTRACT
The applications of biocatalysts in chemical industries are characterized by activity, selectivity, and stability. One key strategy to achieve high biocatalytic activity is the identification of novel enzymes with kinetics optimized for organic synthesis by Nature. The isolation of novel cytochrome P450 monooxygenase genes from Acidovorax sp. CHX100 and their functional expression in recombinant Pseudomonas taiwanensis VLB120 enabled efficient oxidation of cyclohexane to cyclohexanol. Although initial resting cell activities of 20 U gCDW−1 were achieved, the rapid decrease in catalytic activity due to the toxicity of cyclohexane prevented synthetic applications. Cyclohexane toxicity was reduced and cellular activities stabilized over the reaction time by delivering the toxic substrate through the vapor phase and by balancing the aqueous phase mass transfer with the cellular conversion rate. The potential of this novel CYP enzyme was exploited by transferring the shake flask reaction to an aqueous‐air segmented flow biofilm membrane reactor for maximizing productivity. Cyclohexane was continuously delivered via the silicone membrane. This ensured lower reactant toxicity and continuous product formation at an average volumetric productivity of 0.4 g Ltube−1 h−1 for several days. This highlights the potential of combining a powerful catalyst with a beneficial reactor design to overcome critical issues of cyclohexane oxidation to cyclohexanol. It opens new opportunities for biocatalytic transformations of compounds which are toxic, volatile, and have low solubility in water. Biotechnol. Bioeng. 2016;113: 52–61. © 2015 Wiley Periodicals, Inc.
The combination of whole cell biocatalysis with specific reaction concepts overcomes substrate toxicity, volatility and low water solubility issues for cyclohexane oxidation to cyclohexanol. The isolation of novel cytochrome P450 monooxygenase genes from Acidovorax sp. CHX100 and their functional expression in recombinant Pseudomonas taiwanensis VLB120 enabled efficient oxidation of cyclohexane. The application of P. taiwanensis VLB120 biofilms in a segmented flow membrane reactor ensured lower reactant toxicity and continuous product formation at an average volumetric productivity of 0.4 g Ltube−1 h−1 for several days.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.25696</identifier><identifier>PMID: 26153144</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Acidovorax ; Biofilms ; Biofilms - growth & development ; Biotechnology ; catalytic biofilms ; Comamonadaceae - enzymology ; Comamonadaceae - genetics ; Cyclohexane ; cyclohexane oxidation ; Cyclohexanes - metabolism ; Cyclohexanes - toxicity ; cyclohexanol synthesis ; Cyclohexanols - metabolism ; cytochrome P450 ; Cytochromes P450 ; Enzymes ; industrial biotechnology ; Membranes ; Mixed Function Oxygenases - genetics ; Mixed Function Oxygenases - metabolism ; Oxidation ; Oxidation-Reduction ; Productivity ; Pseudomonas ; Pseudomonas - drug effects ; Pseudomonas - genetics ; Pseudomonas - metabolism ; Pseudomonas - physiology ; Recombinant ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; segmented flow ; Toxicity</subject><ispartof>Biotechnology and bioengineering, 2016-01, Vol.113 (1), p.52-61</ispartof><rights>2015 Wiley Periodicals, Inc.</rights><rights>Copyright Wiley Subscription Services, Inc. Jan 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5646-679502877edae7cf4b28fd6c42b68a9ad1362f7d4a74964012f7f96899eaae363</citedby><cites>FETCH-LOGICAL-c5646-679502877edae7cf4b28fd6c42b68a9ad1362f7d4a74964012f7f96899eaae363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.25696$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.25696$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26153144$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karande, Rohan</creatorcontrib><creatorcontrib>Debor, Linde</creatorcontrib><creatorcontrib>Salamanca, Diego</creatorcontrib><creatorcontrib>Bogdahn, Fabian</creatorcontrib><creatorcontrib>Engesser, Karl-Heinrich</creatorcontrib><creatorcontrib>Buehler, Katja</creatorcontrib><creatorcontrib>Schmid, Andreas</creatorcontrib><title>Continuous cyclohexane oxidation to cyclohexanol using a novel cytochrome P450 monooxygenase from Acidovorax sp. CHX100 in recombinant P. taiwanensis VLB120 biofilms</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>ABSTRACT
The applications of biocatalysts in chemical industries are characterized by activity, selectivity, and stability. One key strategy to achieve high biocatalytic activity is the identification of novel enzymes with kinetics optimized for organic synthesis by Nature. The isolation of novel cytochrome P450 monooxygenase genes from Acidovorax sp. CHX100 and their functional expression in recombinant Pseudomonas taiwanensis VLB120 enabled efficient oxidation of cyclohexane to cyclohexanol. Although initial resting cell activities of 20 U gCDW−1 were achieved, the rapid decrease in catalytic activity due to the toxicity of cyclohexane prevented synthetic applications. Cyclohexane toxicity was reduced and cellular activities stabilized over the reaction time by delivering the toxic substrate through the vapor phase and by balancing the aqueous phase mass transfer with the cellular conversion rate. The potential of this novel CYP enzyme was exploited by transferring the shake flask reaction to an aqueous‐air segmented flow biofilm membrane reactor for maximizing productivity. Cyclohexane was continuously delivered via the silicone membrane. This ensured lower reactant toxicity and continuous product formation at an average volumetric productivity of 0.4 g Ltube−1 h−1 for several days. This highlights the potential of combining a powerful catalyst with a beneficial reactor design to overcome critical issues of cyclohexane oxidation to cyclohexanol. It opens new opportunities for biocatalytic transformations of compounds which are toxic, volatile, and have low solubility in water. Biotechnol. Bioeng. 2016;113: 52–61. © 2015 Wiley Periodicals, Inc.
The combination of whole cell biocatalysis with specific reaction concepts overcomes substrate toxicity, volatility and low water solubility issues for cyclohexane oxidation to cyclohexanol. The isolation of novel cytochrome P450 monooxygenase genes from Acidovorax sp. CHX100 and their functional expression in recombinant Pseudomonas taiwanensis VLB120 enabled efficient oxidation of cyclohexane. The application of P. taiwanensis VLB120 biofilms in a segmented flow membrane reactor ensured lower reactant toxicity and continuous product formation at an average volumetric productivity of 0.4 g Ltube−1 h−1 for several days.</description><subject>Acidovorax</subject><subject>Biofilms</subject><subject>Biofilms - growth & development</subject><subject>Biotechnology</subject><subject>catalytic biofilms</subject><subject>Comamonadaceae - enzymology</subject><subject>Comamonadaceae - genetics</subject><subject>Cyclohexane</subject><subject>cyclohexane oxidation</subject><subject>Cyclohexanes - metabolism</subject><subject>Cyclohexanes - toxicity</subject><subject>cyclohexanol synthesis</subject><subject>Cyclohexanols - metabolism</subject><subject>cytochrome P450</subject><subject>Cytochromes P450</subject><subject>Enzymes</subject><subject>industrial biotechnology</subject><subject>Membranes</subject><subject>Mixed Function Oxygenases - genetics</subject><subject>Mixed Function Oxygenases - metabolism</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Productivity</subject><subject>Pseudomonas</subject><subject>Pseudomonas - drug effects</subject><subject>Pseudomonas - genetics</subject><subject>Pseudomonas - metabolism</subject><subject>Pseudomonas - physiology</subject><subject>Recombinant</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>segmented flow</subject><subject>Toxicity</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhS0EotPCghdAltjQRaa245942QaYVoygguFnZzmO07ok9mAn7cwD8Z4Ypq0QEhIr6-p89_jeewB4htEcI0SOGjfOCeOSPwAzjKQoEJHoIZghhHhRMkn2wH5KV7kUFeePwR7hmJWY0hn4UQc_Oj-FKUGzNX24tBvtLQwb1-rRBQ_H8IcQejgl5y-ghj5c2z5LYzCXMQwWnlOG4BB8CJvthfU6WdhlAR4b14brEPUGpvUc1qdf89DQeRitCUPjvPYjPJ_DUbub_LVPLsHPyxNMEGxc6Fw_pCfgUaf7ZJ_evgfg05vXq_q0WL5fnNXHy8IwTnnBhWSIVELYVlthOtqQqmu5oaThlZa6xSUnnWipFlRyinAuOskrKa3WtuTlAXi5813H8H2yaVSDS8b2fZ4rX0hhISpEJUXlf6Asb8A4kRl98Rd6Fabo8yKZolXFBC1xpg53lIkhpWg7tY5u0HGrMFK_YlY5ZvU75sw-v3WcmsG29-Rdrhk42gE3rrfbfzupk7PVnWWx63BptJv7Dh2_KS5KwdSXdwvFV2_rxccPr9Si_AkvMMDs</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Karande, Rohan</creator><creator>Debor, Linde</creator><creator>Salamanca, Diego</creator><creator>Bogdahn, Fabian</creator><creator>Engesser, Karl-Heinrich</creator><creator>Buehler, Katja</creator><creator>Schmid, Andreas</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7QL</scope></search><sort><creationdate>201601</creationdate><title>Continuous cyclohexane oxidation to cyclohexanol using a novel cytochrome P450 monooxygenase from Acidovorax sp. CHX100 in recombinant P. taiwanensis VLB120 biofilms</title><author>Karande, Rohan ; Debor, Linde ; Salamanca, Diego ; Bogdahn, Fabian ; Engesser, Karl-Heinrich ; Buehler, Katja ; Schmid, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5646-679502877edae7cf4b28fd6c42b68a9ad1362f7d4a74964012f7f96899eaae363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acidovorax</topic><topic>Biofilms</topic><topic>Biofilms - growth & development</topic><topic>Biotechnology</topic><topic>catalytic biofilms</topic><topic>Comamonadaceae - enzymology</topic><topic>Comamonadaceae - genetics</topic><topic>Cyclohexane</topic><topic>cyclohexane oxidation</topic><topic>Cyclohexanes - metabolism</topic><topic>Cyclohexanes - toxicity</topic><topic>cyclohexanol synthesis</topic><topic>Cyclohexanols - metabolism</topic><topic>cytochrome P450</topic><topic>Cytochromes P450</topic><topic>Enzymes</topic><topic>industrial biotechnology</topic><topic>Membranes</topic><topic>Mixed Function Oxygenases - genetics</topic><topic>Mixed Function Oxygenases - metabolism</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Productivity</topic><topic>Pseudomonas</topic><topic>Pseudomonas - drug effects</topic><topic>Pseudomonas - genetics</topic><topic>Pseudomonas - metabolism</topic><topic>Pseudomonas - physiology</topic><topic>Recombinant</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>segmented flow</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karande, Rohan</creatorcontrib><creatorcontrib>Debor, Linde</creatorcontrib><creatorcontrib>Salamanca, Diego</creatorcontrib><creatorcontrib>Bogdahn, Fabian</creatorcontrib><creatorcontrib>Engesser, Karl-Heinrich</creatorcontrib><creatorcontrib>Buehler, Katja</creatorcontrib><creatorcontrib>Schmid, Andreas</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karande, Rohan</au><au>Debor, Linde</au><au>Salamanca, Diego</au><au>Bogdahn, Fabian</au><au>Engesser, Karl-Heinrich</au><au>Buehler, Katja</au><au>Schmid, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous cyclohexane oxidation to cyclohexanol using a novel cytochrome P450 monooxygenase from Acidovorax sp. CHX100 in recombinant P. taiwanensis VLB120 biofilms</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2016-01</date><risdate>2016</risdate><volume>113</volume><issue>1</issue><spage>52</spage><epage>61</epage><pages>52-61</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>ABSTRACT
The applications of biocatalysts in chemical industries are characterized by activity, selectivity, and stability. One key strategy to achieve high biocatalytic activity is the identification of novel enzymes with kinetics optimized for organic synthesis by Nature. The isolation of novel cytochrome P450 monooxygenase genes from Acidovorax sp. CHX100 and their functional expression in recombinant Pseudomonas taiwanensis VLB120 enabled efficient oxidation of cyclohexane to cyclohexanol. Although initial resting cell activities of 20 U gCDW−1 were achieved, the rapid decrease in catalytic activity due to the toxicity of cyclohexane prevented synthetic applications. Cyclohexane toxicity was reduced and cellular activities stabilized over the reaction time by delivering the toxic substrate through the vapor phase and by balancing the aqueous phase mass transfer with the cellular conversion rate. The potential of this novel CYP enzyme was exploited by transferring the shake flask reaction to an aqueous‐air segmented flow biofilm membrane reactor for maximizing productivity. Cyclohexane was continuously delivered via the silicone membrane. This ensured lower reactant toxicity and continuous product formation at an average volumetric productivity of 0.4 g Ltube−1 h−1 for several days. This highlights the potential of combining a powerful catalyst with a beneficial reactor design to overcome critical issues of cyclohexane oxidation to cyclohexanol. It opens new opportunities for biocatalytic transformations of compounds which are toxic, volatile, and have low solubility in water. Biotechnol. Bioeng. 2016;113: 52–61. © 2015 Wiley Periodicals, Inc.
The combination of whole cell biocatalysis with specific reaction concepts overcomes substrate toxicity, volatility and low water solubility issues for cyclohexane oxidation to cyclohexanol. The isolation of novel cytochrome P450 monooxygenase genes from Acidovorax sp. CHX100 and their functional expression in recombinant Pseudomonas taiwanensis VLB120 enabled efficient oxidation of cyclohexane. The application of P. taiwanensis VLB120 biofilms in a segmented flow membrane reactor ensured lower reactant toxicity and continuous product formation at an average volumetric productivity of 0.4 g Ltube−1 h−1 for several days.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>26153144</pmid><doi>10.1002/bit.25696</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2016-01, Vol.113 (1), p.52-61 |
issn | 0006-3592 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_1778049403 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Acidovorax Biofilms Biofilms - growth & development Biotechnology catalytic biofilms Comamonadaceae - enzymology Comamonadaceae - genetics Cyclohexane cyclohexane oxidation Cyclohexanes - metabolism Cyclohexanes - toxicity cyclohexanol synthesis Cyclohexanols - metabolism cytochrome P450 Cytochromes P450 Enzymes industrial biotechnology Membranes Mixed Function Oxygenases - genetics Mixed Function Oxygenases - metabolism Oxidation Oxidation-Reduction Productivity Pseudomonas Pseudomonas - drug effects Pseudomonas - genetics Pseudomonas - metabolism Pseudomonas - physiology Recombinant Recombinant Proteins - genetics Recombinant Proteins - metabolism segmented flow Toxicity |
title | Continuous cyclohexane oxidation to cyclohexanol using a novel cytochrome P450 monooxygenase from Acidovorax sp. CHX100 in recombinant P. taiwanensis VLB120 biofilms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A27%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20cyclohexane%20oxidation%20to%20cyclohexanol%20using%20a%20novel%20cytochrome%20P450%20monooxygenase%20from%20Acidovorax%20sp.%20CHX100%20in%20recombinant%20P.%20taiwanensis%20VLB120%20biofilms&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Karande,%20Rohan&rft.date=2016-01&rft.volume=113&rft.issue=1&rft.spage=52&rft.epage=61&rft.pages=52-61&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.25696&rft_dat=%3Cproquest_cross%3E1751205629%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1748857431&rft_id=info:pmid/26153144&rfr_iscdi=true |