Conformational Analysis of the Anti-obesity Drug Lorcaserin in Water: How To Take Advantage of Long-Range Residual Dipolar Couplings

The conformational state of 8‐chloro‐1‐methyl‐2,3,4,5‐tetrahydro‐1H‐3‐benzazepine hydrochloride (lorcaserin) in water has been determined on the basis of one‐bond and long‐range CH residual dipolar coupling (RDC) data along with DFT computations and 3JHH coupling‐constant analysis. According to thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2013-10, Vol.19 (44), p.14989-14997
Hauptverfasser: Trigo-Mouriño, Pablo, de la Fuente, M. Carmen, Gil, Roberto R., Sánchez-Pedregal, Víctor M., Navarro-Vázquez, Armando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14997
container_issue 44
container_start_page 14989
container_title Chemistry : a European journal
container_volume 19
creator Trigo-Mouriño, Pablo
de la Fuente, M. Carmen
Gil, Roberto R.
Sánchez-Pedregal, Víctor M.
Navarro-Vázquez, Armando
description The conformational state of 8‐chloro‐1‐methyl‐2,3,4,5‐tetrahydro‐1H‐3‐benzazepine hydrochloride (lorcaserin) in water has been determined on the basis of one‐bond and long‐range CH residual dipolar coupling (RDC) data along with DFT computations and 3JHH coupling‐constant analysis. According to this analysis, lorcaserin exists as a conformational equilibrium of two crown‐chair forms, of which the preferred conformation has the methyl group in an equatorial orientation. NMR‐based conformational analysis of flexible small molecules in solution is improved by the incorporation of long‐range CH residual dipolar couplings (RDCs; 2DCH) to one‐bond RDCs (1DCH; see picture). Applying this to the anti‐obesity drug, lorcaserin, shows that it exists in solution as two crown‐chair forms in equilibrium.
doi_str_mv 10.1002/chem.201202509
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778048129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099627421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5149-c87233d2a5a848c5ab9015bc9aa38b162ba5c79ea0b02520b13ea8f6f18007e53</originalsourceid><addsrcrecordid>eNqFkc9v0zAYhi0EYmVw5YgsceGS4p-JzW3KxgoqIHVBO1pfUqfzlsTFThi984fjqqNCXCZZtj7peR9L34vQa0rmlBD2vrmx_ZwRygiTRD9BMyoZzXiRy6doRrQoslxyfYJexHhLCNE558_RCROUSM3zGfpd-qH1oYfR-QE6fJauXXQR-xaPNzbNo8t8baMbd_g8TBu89KGBaIMbcDrXMNrwAS_8Pa48ruAuRdY_YRhhY_eOpR822QqGNK2SZD2lP87d1ncQcOmnbeeGTXyJnrXQRfvq4T1F3z9eVOUiW367_FSeLbNGUqGzRhWM8zUDCUqoRkKtCZV1owG4qmnOapBNoS2QOm2DkZpyC6rNW6oIKazkp-jdwbsN_sdk42h6FxvbdTBYP0VDi0IRoSjTj6OSCCGZ4nvr2__QWz-FtMdECcFonopSiZofqCb4GINtzTa4HsLOUGL2VZp9leZYZQq8edBOdW_XR_xvdwnQB-DedXb3iM6Ui4sv_8qzQ9bF0f46ZiHcmbzghTTXXy_NZ7qqrq6EMBX_A46PuNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442161008</pqid></control><display><type>article</type><title>Conformational Analysis of the Anti-obesity Drug Lorcaserin in Water: How To Take Advantage of Long-Range Residual Dipolar Couplings</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Trigo-Mouriño, Pablo ; de la Fuente, M. Carmen ; Gil, Roberto R. ; Sánchez-Pedregal, Víctor M. ; Navarro-Vázquez, Armando</creator><creatorcontrib>Trigo-Mouriño, Pablo ; de la Fuente, M. Carmen ; Gil, Roberto R. ; Sánchez-Pedregal, Víctor M. ; Navarro-Vázquez, Armando</creatorcontrib><description>The conformational state of 8‐chloro‐1‐methyl‐2,3,4,5‐tetrahydro‐1H‐3‐benzazepine hydrochloride (lorcaserin) in water has been determined on the basis of one‐bond and long‐range CH residual dipolar coupling (RDC) data along with DFT computations and 3JHH coupling‐constant analysis. According to this analysis, lorcaserin exists as a conformational equilibrium of two crown‐chair forms, of which the preferred conformation has the methyl group in an equatorial orientation. NMR‐based conformational analysis of flexible small molecules in solution is improved by the incorporation of long‐range CH residual dipolar couplings (RDCs; 2DCH) to one‐bond RDCs (1DCH; see picture). Applying this to the anti‐obesity drug, lorcaserin, shows that it exists in solution as two crown‐chair forms in equilibrium.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201202509</identifier><identifier>PMID: 24105936</identifier><identifier>CODEN: CEUJED</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Anti-Obesity Agents - chemistry ; Anti-Obesity Agents - pharmacology ; anti-obesity drugs ; Benzazepines - chemistry ; Chemistry ; Computation ; conformation analysis ; Conformational analysis ; Couplings ; Drugs ; Hydrochlorides ; Hydrogen Bonding ; Mathematical models ; Molecular Conformation ; NMR spectroscopy ; Nuclear Magnetic Resonance, Biomolecular ; Obesity ; Orientation ; Pictures ; residual dipolar couplings ; Water - chemistry</subject><ispartof>Chemistry : a European journal, 2013-10, Vol.19 (44), p.14989-14997</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5149-c87233d2a5a848c5ab9015bc9aa38b162ba5c79ea0b02520b13ea8f6f18007e53</citedby><cites>FETCH-LOGICAL-c5149-c87233d2a5a848c5ab9015bc9aa38b162ba5c79ea0b02520b13ea8f6f18007e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201202509$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201202509$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24105936$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Trigo-Mouriño, Pablo</creatorcontrib><creatorcontrib>de la Fuente, M. Carmen</creatorcontrib><creatorcontrib>Gil, Roberto R.</creatorcontrib><creatorcontrib>Sánchez-Pedregal, Víctor M.</creatorcontrib><creatorcontrib>Navarro-Vázquez, Armando</creatorcontrib><title>Conformational Analysis of the Anti-obesity Drug Lorcaserin in Water: How To Take Advantage of Long-Range Residual Dipolar Couplings</title><title>Chemistry : a European journal</title><addtitle>Chem. Eur. J</addtitle><description>The conformational state of 8‐chloro‐1‐methyl‐2,3,4,5‐tetrahydro‐1H‐3‐benzazepine hydrochloride (lorcaserin) in water has been determined on the basis of one‐bond and long‐range CH residual dipolar coupling (RDC) data along with DFT computations and 3JHH coupling‐constant analysis. According to this analysis, lorcaserin exists as a conformational equilibrium of two crown‐chair forms, of which the preferred conformation has the methyl group in an equatorial orientation. NMR‐based conformational analysis of flexible small molecules in solution is improved by the incorporation of long‐range CH residual dipolar couplings (RDCs; 2DCH) to one‐bond RDCs (1DCH; see picture). Applying this to the anti‐obesity drug, lorcaserin, shows that it exists in solution as two crown‐chair forms in equilibrium.</description><subject>Anti-Obesity Agents - chemistry</subject><subject>Anti-Obesity Agents - pharmacology</subject><subject>anti-obesity drugs</subject><subject>Benzazepines - chemistry</subject><subject>Chemistry</subject><subject>Computation</subject><subject>conformation analysis</subject><subject>Conformational analysis</subject><subject>Couplings</subject><subject>Drugs</subject><subject>Hydrochlorides</subject><subject>Hydrogen Bonding</subject><subject>Mathematical models</subject><subject>Molecular Conformation</subject><subject>NMR spectroscopy</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Obesity</subject><subject>Orientation</subject><subject>Pictures</subject><subject>residual dipolar couplings</subject><subject>Water - chemistry</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9v0zAYhi0EYmVw5YgsceGS4p-JzW3KxgoqIHVBO1pfUqfzlsTFThi984fjqqNCXCZZtj7peR9L34vQa0rmlBD2vrmx_ZwRygiTRD9BMyoZzXiRy6doRrQoslxyfYJexHhLCNE558_RCROUSM3zGfpd-qH1oYfR-QE6fJauXXQR-xaPNzbNo8t8baMbd_g8TBu89KGBaIMbcDrXMNrwAS_8Pa48ruAuRdY_YRhhY_eOpR822QqGNK2SZD2lP87d1ncQcOmnbeeGTXyJnrXQRfvq4T1F3z9eVOUiW367_FSeLbNGUqGzRhWM8zUDCUqoRkKtCZV1owG4qmnOapBNoS2QOm2DkZpyC6rNW6oIKazkp-jdwbsN_sdk42h6FxvbdTBYP0VDi0IRoSjTj6OSCCGZ4nvr2__QWz-FtMdECcFonopSiZofqCb4GINtzTa4HsLOUGL2VZp9leZYZQq8edBOdW_XR_xvdwnQB-DedXb3iM6Ui4sv_8qzQ9bF0f46ZiHcmbzghTTXXy_NZ7qqrq6EMBX_A46PuNQ</recordid><startdate>20131025</startdate><enddate>20131025</enddate><creator>Trigo-Mouriño, Pablo</creator><creator>de la Fuente, M. Carmen</creator><creator>Gil, Roberto R.</creator><creator>Sánchez-Pedregal, Víctor M.</creator><creator>Navarro-Vázquez, Armando</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20131025</creationdate><title>Conformational Analysis of the Anti-obesity Drug Lorcaserin in Water: How To Take Advantage of Long-Range Residual Dipolar Couplings</title><author>Trigo-Mouriño, Pablo ; de la Fuente, M. Carmen ; Gil, Roberto R. ; Sánchez-Pedregal, Víctor M. ; Navarro-Vázquez, Armando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5149-c87233d2a5a848c5ab9015bc9aa38b162ba5c79ea0b02520b13ea8f6f18007e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anti-Obesity Agents - chemistry</topic><topic>Anti-Obesity Agents - pharmacology</topic><topic>anti-obesity drugs</topic><topic>Benzazepines - chemistry</topic><topic>Chemistry</topic><topic>Computation</topic><topic>conformation analysis</topic><topic>Conformational analysis</topic><topic>Couplings</topic><topic>Drugs</topic><topic>Hydrochlorides</topic><topic>Hydrogen Bonding</topic><topic>Mathematical models</topic><topic>Molecular Conformation</topic><topic>NMR spectroscopy</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Obesity</topic><topic>Orientation</topic><topic>Pictures</topic><topic>residual dipolar couplings</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trigo-Mouriño, Pablo</creatorcontrib><creatorcontrib>de la Fuente, M. Carmen</creatorcontrib><creatorcontrib>Gil, Roberto R.</creatorcontrib><creatorcontrib>Sánchez-Pedregal, Víctor M.</creatorcontrib><creatorcontrib>Navarro-Vázquez, Armando</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trigo-Mouriño, Pablo</au><au>de la Fuente, M. Carmen</au><au>Gil, Roberto R.</au><au>Sánchez-Pedregal, Víctor M.</au><au>Navarro-Vázquez, Armando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformational Analysis of the Anti-obesity Drug Lorcaserin in Water: How To Take Advantage of Long-Range Residual Dipolar Couplings</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chem. Eur. J</addtitle><date>2013-10-25</date><risdate>2013</risdate><volume>19</volume><issue>44</issue><spage>14989</spage><epage>14997</epage><pages>14989-14997</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><coden>CEUJED</coden><abstract>The conformational state of 8‐chloro‐1‐methyl‐2,3,4,5‐tetrahydro‐1H‐3‐benzazepine hydrochloride (lorcaserin) in water has been determined on the basis of one‐bond and long‐range CH residual dipolar coupling (RDC) data along with DFT computations and 3JHH coupling‐constant analysis. According to this analysis, lorcaserin exists as a conformational equilibrium of two crown‐chair forms, of which the preferred conformation has the methyl group in an equatorial orientation. NMR‐based conformational analysis of flexible small molecules in solution is improved by the incorporation of long‐range CH residual dipolar couplings (RDCs; 2DCH) to one‐bond RDCs (1DCH; see picture). Applying this to the anti‐obesity drug, lorcaserin, shows that it exists in solution as two crown‐chair forms in equilibrium.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>24105936</pmid><doi>10.1002/chem.201202509</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2013-10, Vol.19 (44), p.14989-14997
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_1778048129
source Wiley-Blackwell Journals; MEDLINE
subjects Anti-Obesity Agents - chemistry
Anti-Obesity Agents - pharmacology
anti-obesity drugs
Benzazepines - chemistry
Chemistry
Computation
conformation analysis
Conformational analysis
Couplings
Drugs
Hydrochlorides
Hydrogen Bonding
Mathematical models
Molecular Conformation
NMR spectroscopy
Nuclear Magnetic Resonance, Biomolecular
Obesity
Orientation
Pictures
residual dipolar couplings
Water - chemistry
title Conformational Analysis of the Anti-obesity Drug Lorcaserin in Water: How To Take Advantage of Long-Range Residual Dipolar Couplings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A21%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformational%20Analysis%20of%20the%20Anti-obesity%20Drug%20Lorcaserin%20in%20Water:%20How%20To%20Take%20Advantage%20of%20Long-Range%20Residual%20Dipolar%20Couplings&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Trigo-Mouri%C3%B1o,%20Pablo&rft.date=2013-10-25&rft.volume=19&rft.issue=44&rft.spage=14989&rft.epage=14997&rft.pages=14989-14997&rft.issn=0947-6539&rft.eissn=1521-3765&rft.coden=CEUJED&rft_id=info:doi/10.1002/chem.201202509&rft_dat=%3Cproquest_cross%3E3099627421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442161008&rft_id=info:pmid/24105936&rfr_iscdi=true